Физики атомного ядра. Состав и характеристики ядра. Масса и энергия связи ядра. Радиоактивность. a-, b- распад, g излучение. Состав ядра атома. Ядерные силы. Дефект массы и энергия связи ядра атома. Ядерные реакции. Ядерная энергетика

Хроматин

1) гетерохроматин;

2) эухроматин.

Гетерохроматин

Структурный

Факультативный

Эухроматин

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны

ЁНегистоновые белки

Ядрышко

ЁРазмер — 1-5 мкм.

ЁФорма — сферическая.

Гранулярный компонент

Фибриллярный

Ядерная оболочка

1. Внешней ядерной мембраны (m. nuclearis externa),

Внутренняя ядерная мембрана

ЁФункции:

Кариоплазма

Репродукция клеток

Ядерный аппарат

Ядро присутствует во всех эукариотических клетках, за исключением зрелых эритроцитов и ситовидных трубок растений. Клетки, как правило, имеют одно ядро, но иногда встречаются многоядерные клетки.

Ядро бывает шаровидной или овальной формы.

В некоторых клетках встречаются сегментированные ядра. Размеры ядер — от 3 до 10 мкм в диаметре. Ядро необходимо для жизни клетки. Оно регулирует активность клетки. В ядре хранится наследственная информация, заключенная в ДНК. Эта информация, благодаря ядру, при делении клетки передается дочерним клеткам. Ядро определяет специфичность белков, синтезируемых в клетке. В ядре содержится множество белков, необходимых для обеспечения его функций. В ядре синтезируется РНК.

Клеточное ядро состоит из оболочки, ядерного сока, одного или нескольких ядрышек и хроматина .

Функциональная роль ядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран – внешней и внутренней, между которыми располагается околоядерное (перинуклеарное) пространством . Последнее может сообщаться с канальцами цитоплазматической сети. Внешняя мембрана ядерной оболочки непосредственно контактирует с цитоплазмой клетки, имеет ряд структурных особенностей, позволяющих отнести ее к собственно мембранной системе ЭПР. На ней располагается большое количество рибосом, как и на мембранах эргастоплазмы. Внутренняя мембрана ядерной оболочки рибосом на своей поверхности не имеет, но структурно связана с ядерной ламиной – фиброзным периферическим слоем ядерного белкового матрикса.

В ядерной оболочке имеются ядерные поры диаметром 80-90 нм, которые образуются за счет многочисленных зон слияния двух ядерных мембран и представляют собой как бы округлые, сквозные перфорации всей ядерной оболочки. Поры играют важную роль в переносе веществ в цитоплазму и из нее. Ядерный поровый комплекс (ЯПК) с диаметром около 120 нм имеет определенное строение (состоит из более 1000 белков – нуклеопоринов , масса которых в 30 раз больше, чем рибосома), что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. В процессе ядерно-цитоплазматического транспорта ядерные поры функционируют как некоторое молекулярное сито, пропуская частицы определенного размера пассивно, по градиенту концентрации (ионы, углеводы, нуклеотиды, АТФ, гормоны, белки до 60 кДа). Поры не являются постоянными образованиями. Число пор увеличивается в период наибольшей ядерной активности. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1 мкм2 ядерной оболочки приходится около 30 пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1 мкг оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка - белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Ядерный сок (кариоплазма или матрикс) – внутреннее содержимое ядра, представляет собой раствор белков, нуклеотидов, ионов, более вязкий, чем гиалоплазма. В нем присутствуют также фибриллярные белки. В кариоплазме находятся ядрышки и хроматин. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуют нитчатые, или фибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации - гетероядерные РНК (гяРНК), которые здесь же подвергаются процессингу, превращаясь в мРНК.

Ядрышко – обязательный компонент ядра, обнаруживаются в интерфазных ядрах и представляют собой мелкие тельца, шаровидной формы. Ядрышки имеют большую плотность, чем ядро. В ядрышках происходит синтез рРНК, других видов РНК и образование субъединиц рибосом . Возникновение ядрышек связано с определенными зонами хромосом, называемыми ядрышковыми организаторами. Число ядрышек определяется числом ядрышковых организаторов. В них содержатся гены рРНК. Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15 и 21-22 пары) - ядрышковые организаторы , в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называются вторичными перетяжками . С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки.

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20-30 нм. Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны.

Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). В малую субъединицу входят молекулы белка и одна молекула рибосомальной РНК (рРНК), во вторую – белки и три молекулы рРНК. Белок и рРНК по массе в равных количествах участвуют в образовании рибосом. рРНК синтезируется в ядрышке.

Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма - с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока). Рибосомы могут свободно находиться в цитоплазме или быть связанными с эндоплазматической сетью, входя в состав шероховатой ЭПС Белки, образовавшиеся на рибосомах, соединенных с мембраной ЭПС, обычно поступают в цистерны ЭПС. Белки, синтезируемые на свободных рибосомах, остаются в гиалоплазме. Например, на свободных рибосомах синтезируется гемоглобин в эритроцитах. В митохондриях, пластидах и клетках прокариот также присутствуют рибосомы.

Предыдущая11121314151617181920212223242526Следующая

ПОСМОТРЕТЬ ЕЩЕ:

Структура ядра и его химический состав

В состав ядра входит хроматин, ядрышко, кариоплазма (нуклеоплазма), ядерная оболочка.

В клетке, которая делится, в большинстве случаев имеется одно ядро, но встречаются клетки, которые имеют два ядра (20% клеток печени двуядерные), а также многоядерные (остеокласты костной ткани).

ЁРазмеры — колеблятся от 3-4 до 40 мкм.

Каждый тип клетки характеризуется постоянным соотношением объема ядра к объему цитоплазмы. Такое соотношение носит название индекса Гертвинга. В зависимости от значения этого индекса клетки делятся на две группы:

1. ядерные — индекс Гертвинга имеет большее значение;

2. цитоплазматические — индекс Гертвинга имеет незначительные значения.

ЁФорма — может быть сферической, палочковидной, бобовидной, кольцевидной, сегментированной.

ЁЛокализация — ядро всегда локализуется в определенном месте клетки. Например, в цилиндрических клетках желудка оно находится в базальном положении.

Ядро в клетке может находится в двух состояниях:

а) митотическом (во время деления);

б) интерфазном (между делениями).

В живой клетке интерфазное ядро имеет вид оптически пустого, обнаруживается только ядрышко. Структуры ядра в виде нитей, зерен можно наблюдать только при действии на клетку повреждающих факторов, когда она переходит в состояние паранекроза (пограничное состояние между жизнью и смертью). С этого состояния клетка может вернуться к нормальной жизни или погибнуть. После гибели клетки морфологически, в ядре различают следующие изменения:

1) кариопикноз — уплотнение ядра;

2) кариорексис — разложение ядра;

3) кариолизис — растворение ядра.

Функции: 1) хранение и передача генетической информации,

2) биосинтез белка, 3) образование субъединиц рибосом.

Хроматин

Хроматин (от греч. сhroma — цвет краска) — это основная структура интерфазного ядра, которая очень хорошо красится основными красителями и обуславливает для каждого типа клеток хроматиновый рисунок ядра.

Благодаря способности хорошо окрашиваться различными красителями и особенно основными этот компонент ядра и получил название «хроматин» (Флемминг 1880).

Хроматин является структурным аналогом хромосом и в интерфазном ядре представляет собой несущие ДНК тельца.

Морфологически различают два вида хроматина:

1) гетерохроматин;

2) эухроматин.

Гетерохроматин (heterochromatinum) соответствует частично конденсированным в интерфазе участкам хромосом и является функционально неактивным. Этот хроматин очень хорошо окрашивается и именно его можна видеть на гистологических препаратах.

Гетерохроматин в свою очередь делится на:

1) структурный; 2) факультативный.

Структурный гетерохроматин представляет участки хромосом, которые постоянно находятся в конденсированном состоянии.

Факультативный гетерохроматин — это гетерохроматин, способный деконденсироваться и превращатся в эухроматин.

Эухроматин — это деконденсированные в интерфазе участки хромосом. Это рабочий, функционально активный хроматин. Этот хроматин не окрашивается и не обнаруживается на гистологических препаратах.

Во время митоза весь эухроматин максимально конденсируется и входит в состав хромосом. В этот период хромосомы не выполняют никаких синтетических функций. В связи с этим хромосомы клеток могут находится в двух структурно-функциональных состояниях:

1) активном (рабочем), иногда они частично или полностью деконденсированы и с их участием в ядре происходят процессы транскрипции и редупликации;

2) неактивном (нерабочем, метаболического покоя), когда они максимально конденсированы выполняют функцию распределения и переноса генетического материала в дочерние клетки.

Иногда в отдельных случаях целая хромосома в период интерфазы может оставаться в конденсированном состоянии, при этом она имеет вид гладкого гетерохроматина. Например, одна из Х-хромосом соматических клеток женского организма подлежит гетерохроматизации на начальных стадиях эмбриогенеза (во время дробления) и не функционирует. Этот хроматин называется половых хроматином или тельцами Барра.

В разных клетках половой хроматин имеет различный вид:

а) в нейтрофильных лейкоцитах — вид барабанной палочки;

б) в эпителиальных клетках слизистой — вид полусферической глыбки.

Определение полового хроматина используется для установления генетического пола, а также для определения количества Х-хромосом в кариотипе индивидума (оно равняется количеству телец полового хроматина+1).

При электронно-микроскопических исследованиях установлено, что препараты выделенного интерфазного хроматина содержат элементарные хромосомные фибриллы толщиной 20-25 нм, которые состоят из фибрилл толщиной 10 нм.

В химическом отношении фибриллы хроматина представляют собой сложные комплексы дезоксирибонуклеопротеидов, в состав которых входят:

б) специальные хромосомные белки;

Количественное соотношение ДНК, белка и РНК составляет 1:1,3:0,2. На долю ДНК в препарате хроматина приходится 30-40%. Длина индивидуальных линейных молекул ДНК колеблется в непрямых пределах и может достигать сотен микрометров и даже сантиметров. Суммарная длина молекул ДНК во всех хромосомах одной клетки человека составляет около 170 см, что соответствует 6х10-12г.

Белки хроматина составляют 60-70% от его сухой массы и представлены двумя группами:

а) гистоновыми белками;

б) негистоновыми белками.

ЁГистоновые белки (гистоны ) — щелочные белки, содержащие основные аминокислоты (главным образом лизин, аргинин) располагаются неравномерно в виде блоков по длине молекулы ДНК. Один блок содержит 8 молекул гистонов, которые образуют нуклеосому. Размер нуклеосомы около 10 нм. Нуклеосома образуется путем компактизации и сверхспирализации ДНК, что приводит к укорачиванию длины хромосомной фибриллы примерно в 5 раз.

ЁНегистоновые белки составляют 20% от количества гистонов и в интерфазных ядрах образуют внутри ядра структурную сеть, которая носит название ядерного белкового матрикса. Этот матрикс представляет основу, которая определяет морфологию и метаболизм ядра.

Перихроматиновые фибриллы имеют толщину 3-5 нм, гранулы имеют диаметр 45нм и интерхроматиновые гранулы имеют диаметр 21-25 нм.

Ядрышко

Ядрышко (nucleolus) — самая плотная структура ядра, которая хорошо видна в живой неокрашенной клетке и является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активным синтезом РНК в интерфазе, но не является самостоятельной структурой или органеллой.

ЁРазмер — 1-5 мкм.

ЁФорма — сферическая.

Ядрышко имеет неоднородную структуру. В световом микроскопе видна его тонковолокнистая организация.

Электронная микроскопия позволяет обнаружить два основных компонента:

а) гранулярный; б) фибриллярный.

Гранулярный компонент представлен гранулами с диаметром 15-20 нм, это созревающие субъединицы рибосом. Иногда гранулярный компонент образует нитчатые структуры — нуклеолонемы, толщиной около 0,2 мкм. Локализуется гранулярный компонент по периферии.

Фибриллярный компонент представляет собой рибонуклеопротеидные тяжи предшественников рибосом, которые сосредоточены в центральной части ядрышка.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается и ядрышки превращаются в плотные фибриллярные тяжи базофильной природы.

Ядерная оболочка

Ядерная оболочка (nuclolemma) состоит из:

Физика атомного ядра. Состав ядра.

Внешней ядерной мембраны (m. nuclearis externa),

2.Внутренней мембраны (m. nuclearis interna), которые разделены перинуклеарным пространством или цистерной ядерной оболочки (cisterna nucleolemmae), шириной 20-60 нм.

Каждая мембрана имеет толщину 7-8нм. В общем виде ядерная оболочка напоминает полый двухслойный мешок, который отделяет содержимое ядра от цитоплазмы.

Наружная мембрана ядерной оболочки , которая непосредственно контактирует с цитоплазмой клетки, имеет целый ряд структурных особенностей, которые позволяют отнести ее к собственно мембранной системе эндоплазматической сети. К таким особенностям относится: наличие на ней со стороны гиалоплазмы многочисленных полирибосом, а сама внешняя ядерная мембрана может прямо переходить в мембраны гранулярной эндоплазматической сети. Поверхность наружной ядерной мембраны в большинстве животных и растительных клеток не является гладкой и образует различных размеров выросты в сторону цитоплазмы в виде пузырьков или длинных трубчатых образований.

Внутренняя ядерная мембрана связана с хромосомным материалом ядра. Со стороны кариоплазмы к внутренней ядерной мембране прилегает так называемый фибриллярный слой, состоящий из фибрилл, но он характерен не для всех клеток.

Ядерная оболочка не является сплошной. Наиболее характерными структурами ядерной оболочки являются ядерные поры. Ядерные поры образуются в результате слияния двух ядерных мембран. При этом формируются округлые сквозные отверстия (перфорации, annulus pori), которые имеют диаметр около 80-90 нм. Эти отверстия ядерной оболочки заполнены сложноорганизованными глобуллярными и фибриллярными структурами. Совокупность мембранных перфораций и этих структур получило название комплекса поры (complexus pori). Комплекс поры состоит из трех рядов гранул по восемь штук в каждом ряду, диаметр гранул 25 нм, от этих гранул отходят фибриллярные отростки. Гранулы располагаются на границе отверстия в ядерной оболочке: один ряд лежит со стороны ядра, второй — со стороны цитоплазмы, третий в центральной части поры. Фибриллы, отходящие от периферических гранул, могут сходиться в центре и создавать, как бы перегородку, диафрагму поперек поры (diaphragma pori). Размеры пор у данной клетки обычно стабильны. Количество ядерных пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетке, тем больше пор на единицу поверхности клеточного ядра.

ЁФункции:

1. Барьерная — отделяет содержимое ядра от цитоплазмы, ограничивает свободный транспорт макромолекул между ядром и цитоплазмой.

2. Создание внутриядерного порядка — фиксация хромосомного материала в трехмерном просвете ядра.

Кариоплазма

Кариоплазма — это жидкая часть ядра, в которой располагаются ядерные структуры, она является аналогом гиалоплазмы в цитоплазматической части клетки.

Репродукция клеток

Одним из наиболее важных биологических явлений, которое отражает общие закономерности и есть неотъемлемым условием существовния биологических систем в течение достаточно длительного периода времени является репродукция (воспроизведение) их клеточного состава. Размножение клеток, согласно клеточной теории, осуществляется путем деления исходной. Это положение является одним из основных в клеточной теории.

Ядро (nucleus) клетки

ФУНКЦИИ ЯДРА

Хроматин –

Хромосомы

которых входят:

– гистоновые белки

– небольшие количества РНК;

Ядерный матрикс

Состоит из 3 компонентов:

стилающий ядерную оболочку.

Что такое ядро - это в биологии: свойства и функции

Внутриядерная сеть (остов).

3. «Остаточное» ядрышко.

Она состоит из:

– наружной ядерной мембраны;

Нуклеоплазма (кариоплазма) – жидкий компонент ядра, в ко-тором располагаются хроматин и ядрышки. Содержит воду и ряд

Ядрышко

Дата публикования: 2015-02-03; Прочитано: 1053 | Нарушение авторского права страницы

Ядро (nucleus) клетки - система генетической детерминации и регуляции белкового синтеза.

ФУНКЦИИ ЯДРА

● хранение и поддержание наследственной информации

● реализация наследственной информации

Ядро состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы) и ядерной оболочки, отделяющей его от цитоплазмы.

Хроматин – это зоны плотного вещества в ядре, которое хо-

рошо воспринимает разные красители, особенно основные.

В неделящихся клетках хроматин обнаруживается в виде глыбок и гранул, что является интерфазной формой существования хромосом.

Хромосомы – фибриллы хроматина, представляющие собой сложные комплексы дезоксирибонуклеопротеидов (ДНП), в состав

которых входят:

– гистоновые белки

– негистоновые белки – составляют 20%, это ферменты, выполняют структурную и регуляторную функции;

– небольшие количества РНК;

– небольшие количества липидов, полисахаридов, ионов металла.

Ядерный матрикс – является каркасной внутриядерной систе-

мой, объединяющей основой для хроматина, ядрышка, ядерной оболочки. Эта структурная сеть представляет собой основу, определяющую морфологию и метаболизм ядра.

Состоит из 3 компонентов:

1. Ламина (A, B, C) – периферический фибриллярный слой, под-

стилающий ядерную оболочку.

2. Внутриядерная сеть (остов).

3. «Остаточное» ядрышко.

Ядерная оболочка (кариолемма) – это оболочка, отделяющая содержимое ядра от цитоплазмы клетки.

Она состоит из:

– наружной ядерной мембраны;

– внутренней ядерной мембраны, между которыми находится перинуклеарное пространство;

– двумембранная ядерная оболочка имеет поровый комплекс.

Нуклеоплазма (кариоплазма) – жидкий компонент ядра, в ко-тором располагаются хроматин и ядрышки.

Ядро. Компоненты ядра

Содержит воду и ряд

растворенных и взвешенных в ней веществ: РНК, гликопротеинов,

ионов, ферментов, метаболитов.

Ядрышко – самая плотная структура ядра, образовано специа-лизированными участками – петлями хромосом, которые называются ядрышковыми организаторами.

Выделяют 3 компонента ядрышка:

1. Фибриллярный компонент представляет собой первичные транскрипты р-РНК.

2. Гранулярный компонент представляет собой скопление пред-

шественников субъединиц рибосом.

3. Аморфный компонент – участки ядрышкового организатора,

Дата публикования: 2015-02-03; Прочитано: 1052 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Ядро как основной регуляторный компонент клетки. Его строение и функции.

Ядро — обязательная часть клеток эукариот. Это основной регуляторный компонент клет-ки. Оно отвечает за хранение и передачу наследственной информации, управляет всеми обменными процессами в клетке. Не органоид, а компонент клетки.

Ядро состоит из:

1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой.

2) ядерный сок, или кариоплазму,- полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра;

3) хромосомы, которые в неделящемся ядре видны только с помощью специальных методов микроскопии. Совокупность хромосом клетки называется кариотипом. Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок.

4) одно или несколько сферических телец - ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

два состояния ядра:

1. интерфазное ядро — имеет ядер. оболочку- кариолемму.

2. ядро при делений клетки. присутствует только хроматин в разном состоянии.

ядрышки включают две зоны:

1. внутренняя- фибриллярная- молекул белка и пре РНК

2. наружняя- гранулярная- формируют субъединицы рибосом.

Оболочка ядра состоит из двух мембран, разделенных перинуклеарным пространством. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой.

Основные компоненты ядра — хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра.

Главные функции клеточного ядра следующие:

  1. хранение информации;
  2. передача информации в цитоплазму с помощью транскрипции, т. е. синтеза переносящей информацию и-РНК;
  3. передача информации дочерним клеткам при репликации — делении клеток и ядер.
  4. регулирует биохимические, физиологические и морфологические процессы в клетке.

В ядре происходит репликация - удвоение молекул ДНК, а также транскрипция - синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК претерпевают некоторые модификации (например, в процессе сплайсинга из молекул матричной РНК исключаются незначащие, бессмысленные участки), после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками. Компартмент для ядра - кариотека - образован за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов ядерной оболочки. Полость ядерной оболочки называется — люменом или перинуклеарным пространством . Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной — жесткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой.

12. Двумембранные органоиды (митохондрии, пластиды). Их строение и функции.

Митохондрии - это структуры округлой или палочковидной, нередко ветвящейся формы толщиной 0,5 мкм и длиной обычно до 5-10 мкм.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы . В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20-40 нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.
В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2-6 копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата -АТФ). В целом этот процесс называется окислительным фосфорилированием . Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Пластиды – это полуавтономные (могут существовать относительно автономно от ядерной ДНК клетки) двумембранные органоиды, характерные для фотосинтезирующих эукариотных организмов. Различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты. Совокупность пластид в клетке называют пластидомом . Каждый их этих типов при определенных условиях может переходить один в другой. Как и митохондрии, пластиды содержат собственные молекулы ДНК. Поэтому они также способны размножаться независимо от деления клетки. Пластиды характерны только для растительных клеток.

Хлоропласты. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр - от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом . Группа тилакоидов, уложенных наподобие стопки монет, называется граной . Граны связываются друг с другом уплощенными каналами - ламеллами. В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой . В строме имеются кольцевая «голая» ДНК, рибосомы, ферменты цикла Кальвина, зерна крахмала. Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Хлоропласты низших растений называют хроматофорами.

Лейкопласты . Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Амилопласты -синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты - белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты - каротиноиды , придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях и др. Хромопласты считаются конечной стадией развития пластид.

Пластиды могут взаимно превращаться друг в друга: лейкопласты — хлоропласты — хромопласты.

Одномембранные органоиды (ЭПС, аппарат Гольджи, лизосомы). Их строение и функции.

Канальцевая и вакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. В названной системе выделяют шероховатую и гладкую цитоплазматическую сети . Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называются эргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Комплекс Гольджи -представляет собой стопку плоских мембранных мешочков, которые называются цистернами . Цистерны полностью изолированы друг от друга и не соединяются между собой. По краям от цистерн ответвляются многочисленные трубочки и пузырьки. От ЭПС время от времени отшнуровываются вакуоли (пузырьки) с синтезированными веществами, которые перемещаются к комплексу Гольджи и соединяются с ним. Вещества, синтезированные в ЭПС, усложняются и накапливаются в комплексе Гольджи. Функции комплекса Гольджи :1- В цистернах комплекса Гольджи происходит дальнейшее химическое преобразование и усложнение веществ, поступивших в него из ЭПС. Например, формируются вещества, необходимые для обновления мембраны клетки (гликопротеиды, гликолипиды),полисахариды.

2- В комплексе Гольджи происходит накопление веществ и их временное «хранение»

3- Образованные вещества «упаковываются» в пузырьки (в вакуоли) и в таком виде перемещаются по клетке.

4- В комплексе Гольджи образуются лизосомы (сферические органоиды с расщепляющими ферментами).

Лизосомы — мелкие сферические органоиды, стенки которых образованы одинарной мембраной; содержат литические (расщепляющие) ферменты. Сначала лизосомы, отшнуровавшиеся от комплекса Гольджи, содержат неактивные ферменты. При определенных условиях их ферменты активизируются. При слиянии лизосомы с фагоцитозной или пиноцитозной вакуолью образуется пищеварительная вакуоль, в которой происходит внутриклеточное переваривание различных веществ.

Функции лизосом :1- Осуществляют расщепление веществ, поглощенных в результате фагоцитоза и пиноцитоза. Биополимеры расщепляются до мономеров, которые поступают в клетку и используются на ее нужды.

Ядро и его структурные компоненты

Например, они могут быть использованы для синтеза новых органических веществ или могут подвергаться дальнейшему расщеплению для получения энергии.

2- Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки.

Вакуоли — сферические одномембранные органоиды, представляющие собой резервуары воды и растворенных в ней веществ. К вакуолям относятся: фагоцитозные и пиноцитозные вакуоли , пищеварительные вакуоли, пузырьки, отшнуровывающиеся от ЭПС и комплекса Гольджи. Вакуоли животной клетки — мелкие, многочисленные, но их объем не превышает 5% от всего объема клетки. Их основная функция — транспорт веществ по клетке, осуществление взаимосвязи между органоидами.

В клетке растений на долю вакуолей приходится до 90% объема.

В зрелой растительной клетки вакуоль одна, занимает центральное положение. Мембрана вакуоли растительной клетки — тонопласт, ее содержимое — клеточный сок. Функции вакуолей в растительной клетке: поддержание клеточной оболочки в напряжении, накопление различных веществ, в том числе отходов жизнедеятельности клетки. Вакуоли поставляют воду для процессов фотосинтеза. Могут входить:

— запасные вещества, которые могут использоваться самой клеткой (органические кислоты, аминокислоты, сахара, белки). — вещества, которые выводятся из обмена веществ клетки и накапливаются в вакуоли (фенолы, дубильные вещества, алкалоиды и др.) — фитогормоны, фитонциды,

— пигменты (красящие вещества), которые придают клеточному соку пурпурный, красный, синий, фиолетовый цвет, а иногда желтый или кремовый. Именно пигменты клеточного сока окрашивают лепестки цветков, плоды, корнеплоды

14.Немембранные органоиды (микротрубочки, клеточный центр, рибосомы). Их строение и функции. Рибосома — немембранный органоид клетки, осуществляющий биосинтез белка. Состоит из двух субъединиц — малой и большой. Рибосома состоит из 3-4 молекул р-РНК, образующих ее каркас, и нескольких десятков молекул различных белков. Рибосомы синтезируются в ядрышке. В клетке рибосомы могут располагаться на поверхности гранулярной ЭПС или в гиалоплазме клетки в виде полисом. Полисома — это комплекс и-РНК и нескольких рибосом, считывающих с нее информацию. Функция рибосом — биосинтез белка. Если рибосомы располагаются на ЭПС, то синтезируемые ими белки используются на нужды всего организма, рибосомы гиалоплазмы синтезируют белки на нужды самой клетки. Рибосомы прокариотических клеток мельче, чем рибосомы эукариот. Такие же мелкие рибосомы находятся в митохондриях и пластидах.

Микротрубочки — полые цилиндрические структуры клетки, состоящие из несократимогобелка тубулина. Микротрубочки не способны к сокращению. Стенки микротрубочки образованы 13 нитями белка тубулина. Микротрубочки располагаются в толще гиалоплазмы клеток.

Реснички и жгутики — органоиды движения. Главная функция — передвижение клеток или перемещение вдоль клеток окружающей их жидкости или частиц. В многоклеточном организме реснички характерны для эпителия дыхательных путей, маточных труб, а жгутики — для сперматозоидов. Реснички и жгутики отличаются только размерами — жгутики более длинные. В их основе — микротрубочки, расположенные по системе 9(2) + 2. Это значит, что 9 двойных микротрубочек (дуплетов) образуют стенку цилиндра, в центре которого располагаются 2 одиночные микротрубочки. Опорой ресничек и жгутиков являются базальные тельца. Базальное тельце имееет цилиндрическую форму, образовано 9 тройками (триплетами) микротрубочек, в центре базального тельца микротрубочек нет.

Кле точный центр митотический центр, постоянная структура почти всех животных и некоторых растительных клеток, определяет полюса делящейся клетки (см. Митоз). Клеточный центр обычно состоит из двух центриолей - плотных гранул размером 0,2-0,8 мкм, расположенных под прямым углом друг к другу. При образовании митотического аппарата центриоли расходятся к полюсам клетки, определяя ориентировку веретена деления клетки. Поэтому правильнее К. ц. называть митотическим центром , отражая этим его функциональное значение, тем более что лишь в некоторых клетках К. ц. расположен в ее центре. В ходе развития организма изменяются как положение К. ц. в клетках, так и форма его. При делении клетки каждая из дочерних клеток получает пару центриолей. Процесс их удвоения происходит чаще в конце предыдущего клеточного деления. Возникновение ряда патологических форм деления клетки связано с ненормальным делением К. ц.

Особенностью радиоактивного загрязнения в отличие от загрязнения другими поллютантами является то, что вредное воздействие на человека и объекты окружающей среды оказывает не сам радионуклид (поллютант), а излучение, источником которого он является.

Однако бывают случаи, когда радионуклид - токсичный элемент. Например, после аварии на Чернобыльской АЭС в окружающую среду с частицами ядерного топлива были выброшены плутоний 239, 242 Рu. Кроме того, что плутоний - альфа-излучатель и при попадании внутрь организма представляет значительную опасность, плутоний сам по себе - токсичный элемент.

По этой причине используют две группы количественных показателей: 1) для оценки содержания радионуклидов и 2) для оценки воздействия излучения на объект.
Активность - количественная мера содержания радионуклидов в анализируемом объекте. Активность определяется числом радиоактивных распадов атомов в единицу времени. Единицей измерения активности в системе СИ является Беккерель (Бк) равный одному распаду в секунду (1Бк = 1 расп/с). Иногда используется внесистемная единица измерения активности - Кюри (Ки); 1Ки = 3,7 ×1010 Бк.

Доза излучения - количественная мера воздействия излучения на объект.
В связи с тем, что воздействие излучения на объект можно оценивать на разных уровнях: физическом, химическом, биологическом; на уровне отдельных молекул, клеток, тканей или организмов и т. д., используют несколько видов доз: поглощенную, эффективную эквивалентную, экспозиционную.

Для оценки изменения дозы излучения во времени используют показатель «мощность дозы». Мощность дозы - это отношение дозы ко времени. Например, мощность дозы внешнего облучения от естественных источников радиации составляет на территории России 4-20 мкР/ч.

Основной норматив для человека - основной дозовый предел (1 мЗв/год) - вводится в единицах, эффективной эквивалентной дозы. Существуют нормативы и в единицах активности, уровни загрязнения земель, ВДУ, ПГП, СанПиН и др.

Строение атомного ядра.

Атом - это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10 -13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов - ядерных протонов (Z - число протонов) и ядерных нейтронов (N - число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.


Число нуклонов Ам (массовое число) представляет собой сумму чисел протонов и нейтронов: Ам = Z+ N .

Протон - элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон - другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10 -13 см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Для атомов отличающихся составом ядра, употребляется название «нуклиды», а для радиоактивных атомов - «радионуклиды».

Нуклидами называют атомы или ядра с данным числом нуклонов и данным зарядом ядра (обозначение нуклида А Х).

Нуклиды, имеющие одинаковое число нуклонов (Ам = соnst), называются изобарами. Например, нуклиды 96 Sr, 96 Y, 96 Zr принадлежат к ряду изобаров с числом нуклонов Ам = 96.

Нуклиды, имеющие одинаковое число протонов (Z = соnst), называются изотопами. Они различаются только числом нейтронов, поэтому принадлежат одному и тому же элементу: 234 U, 235 U, 236 U, 238 U.

Изотопы - нуклиды с одинаковым числом нейтронов (N = Ам -Z = const). Нуклиды: 36 S, 37 Cl, 38 Ar, 39 K, 40 Ca принадлежат к ряду изотопов с 20 нейтронами.

Изотопы принято обозначать в виде Z Х М, где X - символ химического элемента; М - массовое число, равное сумме числа протонов и нейтронов в ядре; Z - атомный номер или заряд ядра, равный числу протонов в ядре. Поскольку каждый химический элемент имеет свой постоянный атомный номер, то его обычно опускают и ограничиваются написанием только массового числа, например: 3 Н, 14 С, 137 Сs, 90 Sr и т. д.

Атомы ядра, которые имеют одинаковые массовые числа, но разные заряды и, следственно, различные свойства называют «изобарами», так например один из изотопов фосфора имеет массовое число 32 - 15 Р 32 , такое же массовое число имеет и один из изотопов серы - 16 S 32 .

Нуклиды могут быть стабильными (если их ядра устойчивы и не распадаются) и нестабильными (если их ядра неустойчивы и подвергаются изменениям, приводящим в конечном итоге к увеличению стабильности ядра). Неустойчивые атомные ядра, способные самопроизвольно распадаться, называют радионуклидами. Явление самопроизвольного распада ядра атома, сопровождающееся излучением частиц и (или) электромагнитного излучения, называется радиоактивностью.

В результате радиоактивного распада может образоваться как стабильный, так и радиоактивный изотоп, в свою очередь, самопроизвольно распадающийся. Такие цепочки радиоактивных элементов, связанные серией ядерных превращений, называются радиоактивными семействами.

В настоящее время IUРАС (Международный союз теоретической и прикладной химии) официально дал название 109 химическим элементам. Из них только 81 имеет стабильные изотопы, наиболее тяжелым из которых является висмут (Z = 83). Для остальных 28 элементов известны только радиоактивные изотопы, причем уран (U ~ 92) является самым тяжелым элементом, встречающимся в природе. Самый большой из природных нуклидов имеет 238 нуклонов. В общей сложности в настоящее время доказано существование порядка 1700 нуклидов этих 109 элементов, причем число изотопов, известных для отдельных элементов, колеблется от 3 (для водорода) до 29 (для платины).

Изучая состав вещества, ученые пришли к выводу, что вся материя состоит из молекул и атомов. Долгое время атом (в переводе с греческого "неделимый") считался наименьшей конструкционной единицей вещества. Однако дальнейшие исследования показали, что атом имеет сложное строение и, в свою очередь, включает более мелкие частицы.

Из чего состоит атом?

В 1911 году ученый Резерфорд высказал предположение, что в атоме имеется центральная часть, обладающая положительным зарядом. Так впервые появилось понятие об атомном ядре.

По схеме Резерфорда, названной планетарной моделью, атом состоит из ядра и элементарных частиц с отрицательным зарядом - электронов, движущихся вокруг ядра, подобно тому, как планеты обращаются по орбите вокруг Солнца.

В 1932 году другой ученый, Чедвик, открыл нейтрон - частицу, не имеющую электрического заряда.

Согласно современным представлениям, строение атомного ядра соответствует планетарной модели, предложенной Резерфордом. Ядро несет в себе большую часть атомной массы. Также оно имеет положительный заряд. В атомном ядре находятся протоны - положительно заряженные частицы и нейтроны - частицы, не несущие заряда. Протоны и нейтроны называются нуклонами. Отрицательно заряженные частицы - электроны - движутся по орбите вокруг ядра.

Количество протонов в ядре равняется числу электронов, движущихся по орбите. Следовательно, сам атом является частицей, не несущей заряда. Если атом захватит чужие электроны или потеряет свои, то он становится положительным или отрицательным и называется ионом.

Электроны, протоны и нейтроны обобщенно называют субатомными частицами.

Заряд атомного ядра

Ядро имеет зарядовое число Z. Оно определяется количеством протонов, входящих в состав атомного ядра. Узнать это количество просто: достаточно обратиться к периодической системе Менделеева. Порядковый номер элемента, которому принадлежит атом, равняется количеству протонов в ядре. Таким образом, если химическому элементу кислороду соответствует порядковый номер 8, то количество протонов тоже будет равняться восьми. Поскольку число протонов и электронов в атоме совпадает, то электронов тоже будет восемь.

Количество нейтронов называют изотопическим числом и обозначают буквой N. Их число может различаться в атоме одного и того же химического элемента.

Сумма протонов и электронов в ядре называется массовым числом атома и обозначается буквой А. Таким образом, формула подсчета массового числа выглядит так: А=Z+N.

Изотопы

В случае, когда элементы имеют равное количество протонов и электронов, но разное число нейтронов, их называют изотопами химического элемента. Изотопов может быть один или несколько. Они помещаются в одну и ту же ячейку периодической системы.

Изотопы имеют большое значение в химии и физике. Например, изотоп водорода - дейтерий - в сочетании с кислородом дает совершенно новую субстанцию, которую называют тяжелой водой. Она имеет иную температуру кипения и замерзания, чем обычная. А сочетание дейтерия с другим изотопом водорода - тритием приводит к термоядерной реакции синтеза и может использоваться для выработки огромного количества энергии.

Масса ядра и субатомных частиц

Размеры и масса атомов и ничтожно малы в представлениях человека. Размер ядер составляется примерно 10 -12 см. Массу атомного ядра измеряют в физике в так называемых атомных единицах массы - а.е.м.

За одну а.е.м. принимают одну двенадцатую часть массы атома углерода. Используя привычные единицы измерения (килограммы и граммы), массу можно выразить следующим равенством: 1 а.е.м. = 1,660540·10 -24 г. Выраженная таким образом, она называется абсолютной атомной массой.

Несмотря на то, что атомное ядро является самой массивной составляющей атома, его размеры относительно электронного облака, окружающего его, чрезвычайно малы.

Ядерные силы

Атомные ядра являются чрезвычайно устойчивыми. Это значит, что протоны и нейтроны удерживаются в ядре какими-то силами. Это не могут быть электромагнитные силы, поскольку протоны являются одноименно заряженными частицами, а известно, что частицы, обладающие одинаковым зарядом, отталкиваются друг от друга. Гравитационные силы же слишком слабы, чтобы удержать нуклоны вместе. Следовательно, частицы удерживаются в ядре иным взаимодействием - ядерными силами.

Ядерное взаимодействие считается самым сильным из всех существующих в природе. Поэтому данный тип взаимодействия между элементами атомного ядра называют сильным. Оно присутствует у множества элементарных частиц, как и электромагнитные силы.

Особенности ядерных сил

  1. Короткодействие. Ядерные силы, в отличие от электромагнитных, проявляются лишь на очень малых расстояниях, сопоставимых с размерами ядра.
  2. Зарядовая независимость. Данная особенность проявляется в том, что ядерные силы действуют одинаково на протоны и нейтроны.
  3. Насыщение. Нуклоны ядра взаимодействуют лишь с определенным числом других нуклонов.

Энергия связи ядра

С понятием сильного взаимодействия тесно связано другое - энергия связи ядер. Под энергией ядерной связи понимают то количество энергии, которое требуется, чтобы разделить атомное ядро на составляющие его нуклоны. Она равняется энергии, необходимой для формирования ядра из отдельных частиц.

Для вычисления энергии связи ядра необходимо знать массу субатомных частиц. Вычисления показывают, что масса ядра всегда меньше, чем сумма входящих в его состав нуклонов. Дефектом массы называют разницу между массой ядра и суммой его протонов и электронов. При помощи о связи массы и энергии (Е=mc 2) можно вычислить энергию, выработанную при образовании ядра.

О силе энергии связи ядра можно судить по следующему примеру: при образовании нескольких граммов гелия вырабатывается столько же энергии, сколько при сгорании нескольких тонн каменного угля.

Ядерные реакции

Ядра атомов могут взаимодействовать с ядрами других атомов. Такие взаимодействия называются ядерными реакциями. Реакции бывают двух типов.

  1. Реакции деления. Они происходят, когда более тяжелые ядра в результате взаимодействия распадаются на более легкие.
  2. Реакции синтеза. Процесс, обратный делению: ядра сталкиваются, тем самым образуя более тяжелые элементы.

Все ядерные реакции сопровождаются выбросом энергии, которая впоследствии используется в промышленности, в военной сфере, в энергетике и так далее.

Ознакомившись с составом атомного ядра, можно сделать следующие выводы.

  1. Атом состоит из ядра, содержащего протоны и нейтроны, и электронов, находящихся вокруг него.
  2. Массовое число атома равняется сумме нуклонов его ядра.
  3. Нуклоны удерживаются сильным взаимодействием.
  4. Огромные силы, придающие атомному ядру стабильность, называются энергиями связи ядра.

К 20-м годам XX века физики уже не сомневались в том, что атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели атома, измерение отношения e / m для электрона, α-частицы и для так называемой H-частицы - ядра атома водорода, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д.

В настоящее время твердо установлено, что атомные ядра различных элементов состоят из частиц двух видов - протонов и нейтронов .

Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в 1907 г. в опытах Дж. Томсона, которому удалось измерить у нее отношение e / m . В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер. Схема опытов Резерфорда представлена на рис. 6.5.1.

Прибор Резерфорда состоял из вакуумированной камеры, в которой был расположен контейнер К с источником α-частиц. Окно камеры было закрыто металлической фольгой Ф, толщина которой была подобрана так, чтобы α-частицы не могли через нее проникнуть. За окном располагался экран Э, покрытый сернистым цинком. С помощью микроскопа М можно было наблюдать сцинтилляции (т. е. световые вспышки) в точках попадания на экран тяжелых заряженных частиц. При заполнении камеры азотом низкого давления на экране возникали световые вспышки, указывающие на появление потока каких-то частиц, способных проникать через фольгу Ф, практически полностью задерживающую поток α-частиц. Отодвигая экран Э от окна камеры, Резерфорд измерил среднюю длину свободного пробега наблюдаемых частиц в воздухе. Она оказалась приблизительно равной 28 см, что совпадало с оценкой длины пробега H-частиц, наблюдавшихся ранее Дж. Томсоном. Исследования действия на частицы, выбиваемые из ядер азота, электрических и магнитных полей показали, что эти частицы обладают положительным элементарным зарядом и их масса равна массе ядра атома водорода. Впоследствии опыт был выполнен с целым рядом других газообразных веществ. Во всех случаях было обнаружено, что из ядер этих веществ α-частицы выбивают H-частицы или протоны.

По современным измерениям, положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10 -19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10 -22 . Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.

Масса протона , по современным измерениям, равна m p = 1,67262∙10 -27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной массы атома углерода с массовым числом 12:

Следовательно, m p = 1,007276 а. е. м. Во многих случаях массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc 2 . Так как 1 эВ = 1,60218·10 -19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ.

Таким образом, в опыте Резерфорда было открыто явление расщепления ядер азота и других элементов при ударах быстрых α-частиц и показано, что протоны входят в состав ядер атомов .

После открытия протона было высказано предположение, что ядра атомов состоят из одних протонов. Однако это предположение оказалось несостоятельным, так как отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны. Для более тяжелых ядер это отношение оказывается меньше, чем для легких, т. е. при переходе к более тяжелым ядрам масса ядра растет быстрее, чем заряд.

В 1920 г. Резерфорд высказал гипотезу о существовании в составе ядер жестко связанной компактной протон-электронной пары, представляющей собой электрически нейтральное образование - частицу с массой, приблизительно равной массе протона. Он даже придумал название этой гипотетической частице - нейтрон . Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, т. е. области размером R ≈ 10 -13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу. Однако идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Джеймсом Чедвиком заняться ее поиском. Через 12 лет, в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон. На рис. 6.5.2 приведена упрощенная схема установки для обнаружения нейтронов.

При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10-20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Ирен и Фредерик Жолио-Кюри (Ирен - дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость. Она оказалась огромной - порядка 50 МэВ.

Дж. Чедвик в 1932 г. выполнил серию экспериментов по всестороннему изучению свойств излучения, возникающего при облучении бериллия α-частицами. В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. 6.5.2 изображен счетчик Гейгера , предназначенный для регистрации заряженных частиц. Он состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом (обычно аргоном) при низком давлении. Заряженная частица, пролетая в газе, вызывает ионизацию молекул. Появившиеся в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и через счетчик проходит короткий разрядный импульс тока. Другим важнейшим прибором для исследования частиц является так называемая камера Вильсона , в которой быстрая заряженная частица оставляет след (трек). Траекторию частицы можно наблюдать непосредственно или фотографировать. Действие камеры Вильсона, созданной в 1912 г., основано на конденсации перенасыщенного пара на ионах, образующихся в рабочем объеме камеры вдоль траектории заряженной частицы. С помощью камеры Вильсона можно наблюдать искривление траектории заряженной частицы в электрическом и магнитном полях.

Дж. Чедвик в своих опытах наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. На основании этих опытов он сделал оценку энергии γ-кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Она оказалась равной 100-150 МэВ. Такой огромной энергией не могли обладать γ-кванты, испущенные бериллием. На этом основании Чедвик заключил, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а достаточно тяжелые частицы. Эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, следовательно, они были электронейтральны. Так было доказано существование нейтрона - частицы, предсказанной Резерфордом более чем за 10 лет до опытов Чедвика.

Нейтрон - это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд.

По современным измерениям, масса нейтрона m n = 1,67493∙10 -27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона.

Сразу же после открытия нейтрона российский ученый Д.Д Иваненко и немецкий физик В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями. Протоны и нейтроны принято называть нуклонами .

Для характеристики атомных ядер вводится ряд обозначений. Число протонов, входящих в состав атомного ядра, обозначают символом Z и называют зарядовым числом или атомным номером (это порядковый номер в периодической таблице Менделеева). Заряд ядра равен Ze , где e - элементарный заряд. Число нейтронов обозначают символом N .

Общее число нуклонов (т. е. протонов и нейтронов) называют массовым числом A :

A = Z + N .

Ядра химических элементов обозначают символом , где X - химический символ элемента. Например,

Водород, - гелий, - углерод, - кислород, - уран.

Ядра одного и того же химического элемента могут отличаться числом нейтронов. Такие ядра называются изотопами . У большинства химических элементов имеется несколько изотопов. Например, у водорода их три: - обычный водород, - дейтерий и - тритий. У углерода - 6 изотопов, у кислорода - 3.

Химические элементы в природных условиях обычно представляют собой смесь изотопов. Существование изотопов определяет значение атомной массы природного элемента в периодической системе Менделеева. Так, например, относительная атомная масса природного углерода равна 12,011.

Атомное ядро
Atomic nucleus

Атомное ядро – центральная и очень компактная часть атома, в которой сосредоточена практически вся его масса и весь положительный электрический заряд. Ядро, удерживая вблизи себя кулоновскими силами электроны в количестве, компенсирующем его положительный заряд, образует нейтральный атом. Большинство ядер имеют форму близкую к сферической и диаметр ≈ 10 -12 см, что на четыре порядка меньше диаметра атома (10 -8 см). Плотность вещества в ядре – около 230 млн.тонн/см 3 .
Атомное ядро было открыто в 1911 г. в результате серии экспериментов по рассеянию альфа-частиц тонкими золотыми и платиновыми фольгами, выполненных в Кембридже (Англия) под руководством Э. Резерфорда . В 1932 г. после открытия там же Дж. Чедвиком нейтрона стало ясно, что ядро состоит из протонов и нейтронов
(В. Гейзенберг , Д.Д. Иваненко , Э. Майорана).
Для обозначения атомного ядра используется символ химического элемента атома, в состав которого входит ядро, причём левый верхний индекс этого символа показывает число нуклонов (массовое число) в данном ядре, а левый нижний индекс – число протонов в нём. Например, ядро никеля, содержащее 58 нуклонов, из которых 28 протонов, обозначается . Это же ядро можно также обозначать 58 Ni, либо никель-58.

Ядро – система плотно упакованных протонов и нейтронов, двигающихся со скоростью 10 9 -10 10 см/сек и удерживаемых мощными и короткодействующими ядерными силами взаимного притяжения (область их действия ограничена расстояниями ≈ 10 -13 см). Протоны и нейтроны имеют размер около 10 -13 см и рассматриваются как два разных состояния одной частицы, называемой нуклоном. Радиус ядра можно приближённо оценить по формуле R ≈ (1.0-1.1)·10 -13 А 1/3 см, где А – число нуклонов (суммарное число протонов и нейтронов) в ядре. На рис. 1 показано как меняется плотность вещества (в единицах 10 14 г/см 3) внутри ядра никеля, состоящего из 28 протонов и 30 нейтронов, в зависимости от расстояния r (в единицах 10 -13 см) до центра ядра.
Ядерное взаимодействие (взаимодействие между нуклонами в ядре) возникает за счёт того, что нуклоны обмениваются мезонами. Это взаимодействие – проявление более фундаментального сильного взаимодействиямежду кварками, из которых состоят нуклоны и мезоны (подобным образом силы химической связи в молекулах – проявление более фундаментальных электромагнитных сил).
Мир ядер очень разнообразен. Известно около 3000 ядер, отличающихся друг от друга либо числом протонов, либо числом нейтронов, либо тем и другим. Большинство из них получено искусственным путём.
Лишь 264 ядра стабильны, т.е. не испытывают со временем никаких самопроизвольных превращений, именуемых распадами. Остальные испытывают различные формы распада – альфа-распад (испускание альфа-частицы, т.е. ядра атома гелия); бета-распад (одновременное испускание – электрона и антинейтрино или позитрона и нейтрино, а также поглощение атомарного электрона с испусканием нейтрино); гамма-распад (испускание фотона) и другие.
Различные типы ядер часто называют нуклидами. Нуклиды с одинаковым числом протонов и разным числом нейтронов называют изотопами. Нуклиды с одинаковым числом нуклонов, но разным соотношением протонов и нейтронов называются изобарами. Лёгкие ядра содержат примерно равные количества протонов и нейтронов. У тяжёлых ядер число нейтронов примерно в 1,5 раза превышает число протонов. Самое лёгкое ядро – ядро атома водорода, состоящее из одного протона. У наиболее тяжелых известных ядер (они получены искусственно) число нуклонов ≈290. Из них 116-118 протонов.
Различные комбинации количества протонов Z и нейтронов соответствуют различным атомным ядрам. Атомные ядра существуют (т.е. их время жизни t > 10 -23 c) в довольно узком диапазоне изменений чисел Z и N. При этом все атомные ядра делятся на две большие группы - стабильные и радиоактивные (нестабильные). Стабильные ядра группируются вблизи линии стабильности, которая определяется уравнением

Рис. 2. NZ- диаграмма атомных ядер.

На рис. 2 показана NZ-диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтронноизбыточные ядра). Цветом выделены атомные ядра, обнаруженные в настоящее время. Их около 3.5 тысяч. Считается, что всего их должно быть 7 – 7.5 тысяч. Протоноизбыточные ядра (малиновый цвет) являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра (голубой цвет) также являются радиоактивными и превращаются в стабильные в результате - -распадов, с превращением нейтрона ядра в протон.
Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - -распада подвержены также α-распаду (желтый цвет) и спонтанному делению, которые становятся их основными каналами распада. Пунктирная линия на рис. 2 очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p – энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n – энергия отделения нейтрона) – справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~10 -23 – 10 -22 c) с испусканием нуклонов.
При соединении (синтезе) двух лёгких ядер и делении тяжёлого ядра на два более лёгких осколка выделяется большая энергия. Эти два способа получения энергии – самые эффективные из всех известных. Так 1 грамм ядерного топлива эквивалентен 10 тоннам химического топлива. Синтез ядер (термоядерные реакции) является источником энергии звёзд. Неуправляемый (взрывной) синтез осуществляется при подрыве термоядерной (или, так называемой, “водородной”) бомбы. Управляемый (медленный) синтез лежит в основе перспективного разрабатываемого источника энергии – термоядерного реактора.
Неуправляемое (взрывное) деление происходит при взрыве атомной бомбы. Управляемое деление осуществляется в ядерных реакторах, являющихся источниками энергии в атомных электростанциях.
Для теоретического описания атомных ядер используется квантовая механика и различные модели.
Ядро может вести себя и как газ (квантовый газ) и как жидкость (квантовая жидкость). Холодная ядерная жидкость обладает свойствами сверхтекучести. В сильно нагретом ядре происходит распад нуклонов на составляющие их кварки. Эти кварки взаимодействуют обменом глюонами. В результате такого распада совокупность нуклонов внутри ядра превращается в новое состояние материи – кварк-глюонную плазму



Вверх