Основные процессы обогащения полезных ископаемых. Какие специальные методы обогащения Вы знаете? Гравитационный метод обогащения

В комбинированных методах наряду с традиционными способами обогащения используются пиро- или гидрометаллургические операции, приводящие к изменению химического состава сырья. Используемые пирометаллургические операции: обжиг, плавка, конвертирование; гидрометаллургические: выщелачивание, осаждение, экстракция, сорбция.

Например, обжиг применяется для изменения магнитных свойств слабомагнитных минералов железа (карбонатов, окислов, гидроокислов). При нагревании до 600 – 800 °С гематит (красный железняк Fе 2 О 3) восстанавливается газообразными или твердыми восстановителями (окись углерода, водород, природный газ, уголь и др.) до сильномагнитного магнетита (Fe 3 O 4). Процесс этот иногда называют восстановительным обжигом. Обожженную руду обогащают на магнитных сепараторах со слабым магнитным полем аналогично обогащению природных магнетитовых руд.

Гидрометаллургические операции (химическое обогащения) применяют для руд сложного состава. Основа химического обогащения это селективное растворение минералов и последующие извлечения ценных компонентов из растворов. При этом используется различная способность разделяемых минералов растворяться.

Процессы селективного растворения минералов полезных ископаемых с последующим извлечением их из растворов называют выщелачиванием. Растворение производят под землей непосредственно в рудном теле – подземное выщелачивание; на поверхности земли в куче большого размера, сделанной из обогащаемого сырья (руда, отвалы), – кучное выщелачивание и в специальных аппаратах (чанах) – чановое выщелачивание. Минералы из растворов извлекают цементацией, экстракцией, ионной флотацией.

Например, медь извлекают из раствора цементацией железа или жидкой экстракцией органическими растворителями, а уран - ионной флотацией, сорбцией и экстракцией. Выщелачивание применяют для извлечения некоторых металлов из бедных отвалов и забалансовых руд, обогащения медных и урановых руд, доводки вольфрамовых, оловянных, калийных и других концентратов. При переработке урановых руд выщелачивание является основным процессом обогащения.

3 Вспомогательные процессы обогащения

Задача вспомогательных процессов  довести продукты обогащения до нужных кондиций и обеспечить оптимальное протекание основных процессов. К ним относят обезвоживание, обеспыливание и пылеулавливание, очистку сточных вод, опробование, контроль и автоматизацию.

3.1. Обезвоживание продуктов обогащения

В большинстве случаев получаемые продукты обогащения содержат значительное количество воды и не пригодны для транспортирования и металлургической обработки. Для удаления воды (влаги) из продуктов обогащения применяют ряд операций, называемых в общем случае обезвоживанием. В более широком смысле под обезвоживанием понимают процесс отделения жидкой фазы от твердой.

Влажность материала определяется отношением массы воды в продукте к общей массе влажного материала и обычно выражается в процентах:

W = (Q 1  Q 2)100/Q 1 ,

где Q 1  масса влажного материала; Q 2  масса сухого материала.

Для характеристики продуктов обогащения часто используют разжижение R , определяющее отношение массы жидкости в продукте к массе твердого. Влажность продукта в процентах определяется через разжижение выражением

W = R 100/(R + 1).

Получаемые на фабриках при обогащении руд продукты, как правило, представлены жидкими пульпами. Присутствующую в продуктах влагу подразделяют на внутреннюю и внешнюю.

Внутренней влагой называют влагу, содержащуюся в кристаллической решетке минерала. Ее именуют кристаллизационной, если она присутствует в виде молекул Н 2 О (например CuSO 4 · 5H 2 O), или конституционной, если присутствует в виде ионов ОН  , Н + , Н 3 О + (например, Cu(OH) 2). Удалить ее можно при обжиге или прокаливании материала.

Внешнюю влагу делят на гравитационную, капиллярную, пленочную и гигроскопическую:

 свободная (гравитационная) удаляется под действием сил тяжести; продукты обогащения представляют собой суспензии;

 капиллярная удерживается силами капиллярного давления и удаляется с помощью внешних сил; продукты называются влажными (мокрыми);

 пленочная удерживается на поверхности частиц силами молекулярного притяжения между молекулами воды и частиц; продукты называют воздушно-сухими;

 гигроскопическая содержится в сухих продуктах и удерживается на поверхности частиц адсорбционными силами в виде мономолекулярных пленок.

В зависимости от содержания влаги про­дукты подразделяют на жидкие (обводненные), мокрые, влажные, воздушно-сухие, сухие и прокаленные.

Жидкие продукты характеризуются большим разжижением и текучестью. Влаги в них содержится не менее 40 %.Такие продукты хорошо транспортируются.

Мокрые продукты содержат меньше воды (от 15-20 до 40 %), чем жидкие. Если такие продукты представлены мелким мате­риалом, они растекаются, часть воды из них выделяется при транспортировании, перегруз­ках и непродолжительном хранении. Для жидких и мокрых продуктов харак­терно присутствие всех видов влаги.

Влажные продукты являются промежуточными между мокрыми и воздушно-сухими. Содержание влаги в них составляет от 5-6 до 15-20 %. Они нетекучи. Во влажных продуктах содержится гигроскопическая, пленочная, часть капиллярной и внутренняя влага.

Воздушно-сухие продукты представляют собой сыпучие материалы, поверхность которых вследствие гигроскопичности незначительно увлажнена находящимися в воздухе парами воды. Иногда воздушно-сухими называют продукты с влажностью в несколько процентов. Они содержат внутреннюю и гигроскопичную влагу.

Сухие продукты не содержат внешней влаги.

Прокаленные – это продукты, из которых термически удалена химически связанная вода.

Процесс удаления влаги из продуктов обогащения называется обезвоживанием. В зависимости от крупности материала и его влажности используют различные методы обезвоживания.

В зависимости от крупности материала и его влажности используют различные методы обезвоживания: для сравнительно крупных частиц  дренирование, иногда центрифугирование; для мелких частиц  сгущение и фильтрование. Часто последовательно применяют несколько способов обезвоживания. Последней операцией обезвоживания является сушка. Чем мельче материал и больше его влажность, тем сложнее (и дороже) эту влагу удалить. Например, для удаления влаги из крупных классов углей (-150 + 13 мм) используют только дренирование, из средних классов (-13 + 1 мм) дренирование и центрифугирование, из мелких классов (- 1 мм) – сгущение, фильтрование и сушку.

Простейшим способом обезвоживания является дренирование. Дренирование – процесс обезвоживания, основанный на естественной фильтрации жидкости через промежутки между твердыми частицами (кусками) под действием силы тяжести. Иногда для ускорения фильтрации жидкости на фильтрующий слой воздействуют механическими колебаниями. Дренирование производится в неподвижном состоянии и в движении. Процесс обычно используется для крупных и средних частиц. Для дренирования используют разные приемы и аппараты. Обезвоживание в штабелях. Продукт загружают в емкость или на ровную поверхность, имеющую дренажную систему. Вода под действием силы тяжести просачивается между отдельными зернами и собирается в специальные приямки, откуда ее периодически откачивают. Такой способ обезвоживания требует длительного времени. В качестве обезвоживающих дренированием аппаратов в движении применяют классификаторы, грохоты, элеваторы. На этих аппаратах отделяют, как правило, гравитационную влагу.

Центрифугированием называются операции обезвоживания мелких мокрых продуктов обогащения и разделения суспензии на жидкую и твердую фазы под действием центробежных сил. Процесс применяется обычно для обезвоживания средних классов углей и для минеральных солей. Центрифугирование осуществляется в центробежных машинах – центрифугах, представляющих собой вращающиеся вокруг своей оси с большой скоростью роторы цилиндрической или конической формы с перфорированными или сплошными стенками. Различают фильтрующее и осадительное центрифугирование. В первом случае обезвоживаемый материал загружается в перфорированный ротор центрифуги и совершает вместе с ним вращательное движение. Под действием центробежной силы происходит принудительная фильтрация воды, находящейся в продукте, через осадок твердых частиц, отлагающийся на стенках ротора, и дырчатую его поверхность. Прошедшая через дырчатую поверхность ротора жидкая фаза называется фугатом, а движущаяся по ротору твердая фаза – осадком (готовым обезвоженным продуктом). Центрифуги с перфорированным ротором называются фильтрующими.

Осадительное центрифугирование осуществляется в центрифу­гах со сплошным ротором. Под действием центробежных сил твердые частицы оседают на стенки ротора и уплотняются, вода выжимается из промежутков между частицами и удаляется в виде фугата через сливные окна ротора. Осадок на стенках ротора шнеком перемещается в конец ротора и удаляется из него через отверстия. При перемещении осадка шнеком из него выжимается вода, стекающая к сливным окнам.

Сгущение – процесс осаждения твердой фазы и выделения жидкой фазы из пульпы, происходящий в результате оседания в ней твердых частиц под действием силы тяжести или центробежных сил (гравитационное или центробежное). При этом под термином «сгущение» подразумевается, получение уплотненного конечного (сгущенного) продукта (пески). Процесс сгущения сопровождается процессом осветления, т. е. получением свободной от твердой фазы жидкости – слива. Сгущение обычно применяется для пульп, содержащих твердую фазу в виде мелких частиц размером < 0,5 мм.Основным аппаратом, применяемым для сгущения, является радиальный сгуститель, представляющий собой цилиндр диаметром 2,5 – 100 м и более и высотой 1,5 – 10 м (высота увеличивается с увеличением диаметра) с коническим днищем, образующая которого наклонена под небольшим углом к горизонтальной плоскости. Загрузка пульпы происходит через центральный патрубок, разгрузка продуктов – через отверстие в центре дна сгустителя (сгущенный продукт) и желоб у края цилиндра (слив). Для улучшения разгрузки сгущенного продукта около дна сгустителя установлены грабли, вращающиеся с периферической скоростью 3-12 м/мин. Для улучшения показателей сгущения в пульпу добавляют коагулянты и флокулянты.

Фильтрование представляет собой процесс разделения жидкой и твердой фаз пульпы с помощью пористой перегородки под действием разности давлений по обе стороны перегородки, создаваемой разрежением воздуха (вакуум – фильтры), илиизбыточным давлением (пресс – фильтры). Фильтровальной перегородкой в промышленных фильтрах может быть: фильтроткань (хлопчатобумажная, металлическая, из синтетических материалов) или пористая керамика.

Фильтры, работающие под вакуумом делятся на барабанные с внешней и внутренней фильтрующей поверхностью, дисковые, и ленточные. Барабанные и дисковые фильтры хорошо работают при фильтровании относительно мелких продуктов, ленточные – при более крупном материале. Влажность отфильтрованных продуктов обычно бывает в пределах 20 – 40 %.

Дисковый фильтр (рис.3.1) состоит из полого вала на котором закреплены диски, состоящие из отдельных пустотелых секторов. Секторы имеют ребристую поверхность с отверстиями, на которой натянута фильтровальная ткань. Питание подается по трубе через патрубки в ванну, заполненную до переливного окна. Диски по окружности так же, разделены на зоны: фильтрования; подсушки; перехода от вакуума к отдувке, называемая «мертвой» отдувки; «мертвая» - переход от давления к вакууму. Для снятия оставшегося после отдувки осадка установлены ножи. Подача воздуха и создание вакуума в секторах осуществляются через каналы, имеющиеся во вращающемся валу, при помощи распределительной головки.

В барабанный фильтр с наружной фильтрующей поверхностью (рис.3.2) исходный продукт загружается через трубу в ванну и поддерживается во взвешенном состоянии мешалкой. Полый барабан имеет несколько секторов, разделяющих его на зоны: набора осадка, подсушки, отдувки и продувки ткани. Вся цилиндрическая поверхность барабана покрыта фильтровальной тканью или сеткой. Для съема осадка смонтирован специальный нож. Центральный вал барабана, имеющий специальные отверстия, соединяет зоны набора осадка и подсушки с вакуум системой, а отдувки и продувки с системой воздуходувок. По сравнению с дисковыми – барабанные вакуум-фильтры позволяют получить несколько более сухой кек (на 1 – 2 %) но имееют меньшую удельную производительность.

Ленточные фильтры (рис.3.3) выпускаются со сходящим полотном и полотном, закрепленным на ленте. Принцип работы их одинаков. Отличаются они только тем, что у фильтров со сходящим полотном фильтровальная ткань на холостой ветви отделяется от ленты и лучше промывается. Фильтруемый материал через питающий лоток загружается на поверхность фильтровальной ткани, которая лежит на рифленой ленте, имеющей в средине отверстия. Лента вместе с фильтровальной тканью и продуктом на ней движется благодаря вращению приводного барабана. Отверстия на ленте совмещены с отверстиями на вакуум-камере. Вакуум-камера создает разрежение, в результате чего через фильтровальную ткань отсасывает фильтрат, который отводится по трубопроводу; осадок с помощью ножа разгружается в конце фильтра. Борта фильтра предотвращают рассыпание осадка по сторонам. Брызгала служат для промывки ткани.

Пресс – фильтры позволяют получить более сухой продукт, чем вакуум – фильтры (в отдельных случаях с кондиционной влажностью, позволяющей избежать дальнейшей сушки), но они имеют более низкую производительность и дороже.

Сушкой называют операции обезвоживания влажных продуктов обогащения, основанные на испарении содержащейся в них влаги в окружающую их газовую (воздушную) среду при нагревании сушимого продукта.

Аппараты, применяемые для сушки, называются сушилками. В зависимости конструкций различают барабанные, подовые, конвейерные, трубы-сушилки и сушилки кипящего слоя. В практике обогащения полезных ископаемых наиболее широко применяют барабанные, трубы – сушилки и сушилки кипящего слоя. Барабанные сушилки (рис 3.4) представляют собой вращающийся наклонный барабан, с одной стороны которого загружается материал и от топки подаются горячие газы. За счет специальных насадок внутри барабана материал постоянно поднимается на некоторую высоту и сбрасывается. Горячие газы проходят сквозь этот падающий материал за счет разрежения, создаваемого дымососами. Барабанные сушилки изготовляются диаметром 1000 – 3500 мм и длиной 4000 – 27000 мм. Время пребывания материала в барабане зависит от характеристики продукта, подвергаемого сушке, его начальной и конечной влажности и составляет 29 – 40 мин. Влажность высушенного материала составляет 4 – 6 %, а в некоторых случаях 0,5 – 1,5%.

В трубе – сушилке материал сушат во взвешенном состоянии. Установка для сушки материала в трубе-сушилке (рис. 3.5) состоит из топки со смесительной камерой и вертикально установленной трубой. Материал из бункера с помощью конвейера подается к питателю – забрасывателю. Забрасыватель подает материал в трубу, по которой он горячими газами транспортируется вверх. Движение горячего газа от топки вверх обеспечивается разрежением, создаваемым вентилятором – дымососом. Верхний конец трубы входит в циклонообразную емкость. За счет увеличенного по сравнению с трубой объема емкости разрежение в ней падает, и материал оседает вниз, откуда он периодически выгружается с помощью затвора – мигалки. Двигаясь в потоке горячего газа, частицы материала высушиваются.

Установки для сушки материала в кипящем слое работают на принципе псевдосжижения сыпучего материала потоком горячего газа, который получается от сжигания топлива в топке.

КУРС ЛЕКЦИЙ

Введение. Значение и роль обогащения при использовании различных ПИ…6
Классификация процессов обогащения………………………………………..14
Типы и схемы обогащения и их применения………………………………….21
Процессы грохочения. Конструкции и принцип работы грохотов…………..27
Способы и процессы дробления полезных ископаемых……………………...38
Типы дробилок и схемы дробления…………………………………………….45
Процесс измельчения. Типы и принцип работы мельниц…………………….58
Классификация продуктов………………………………………………………70
Конструкция и принцип работы гидравлических классификаторов. Конструкция и принцип работы воздушных классификаторов………………74
Гравитационные методы обогащения………………………………………….82
Обогащение в тяжелых средах………………………………………………….89
Обогащение на отсадочных машинах……………………………………….....99
Обогащение на концентрационных столах…………………………………..110
Флотационные методы обогащения. Типы флотационных реагентов их применение в производстве…………………………………………………..118
Конструкции и принцип работы флотационных машин…………………….127
Магнитные методы обогащения………………………………………………137
Электрическое обогащение. Обезвоживание продуктов обогащения……..145
Применение различных сгустителей и принцип их работы. Механическое оборудование для фильтрования……………………………………………..154
Список рекомендуемых источников…………………………………………168

ВЕДЕНИЕ. ЗНАЧЕНИЕ И РОЛЬ ОБОГАЩЕНИЯ ПРИ ИСПОЛЬЗОВАНИИ РАЗЛИЧНЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ.

Цель: Получение студентами начальных навыков в терминах и названиях, а так же в значении самого предмета и его ценности в практическом применении.

План:

1.
Основные термины предмета и их значение.

2.
Общие сведения о рудах и минералах цветных и редких металлов.

Подразделения и группировка руд.

3.
Характеристика Месторождений. Концентраты, промпродукты, хвосты.



4.
Значение и роль обогатительных фабрик при использовании полезных ископаемых.

Ключевые слова: руда, минерал, монометаллическая руда, полиметаллическая, полезный компонент, ценный компонент, концентрат, промпродукт, хвосты, пустая порода, окисленные руды, самородные, тонковкрапленные, сульфидные, обогащение полезных ископаемых, обогатительная фабрика, значение (социальное, экономическое).

1. «Основными направлениями экономического и социального раз­вития Республики Узбекистан на современный период, предусматривается дальнейшее совершенствование технологии добычи и переработки руд и концентратов, повышение ком­плексности использования минерального сырья, ускорение внедрения эффективных технологических процессов, улучшение качества и ассортимента выпускаемой продукции.

Развитие экономической стабильности страны является развитие современных технологий и техники различных отраслей промышленности, в том числе обогащения полезных ископаемых.

Источником получения металлов, многих видов сырья, топлива, а так же строительных материалов являются полезные ископаемые.

Полезные ископаемые в зависимости от характера и назначения ценных компонентов принято подразделять на: рудные, нерудные и горючие.

Рудами называют полезные ископаемые, которые содержат ценные компоненты в количестве, достаточном для того, чтобы их извлечение при современном состоянии технологии и техники было экономически выгодным. Руды делятся на металлические и неметаллические.

К металлическим относятся руды, являющиеся сырьем для получения черных, цветных, редких, драгоценных и других металлов.

К неметаллическим – асбестовые, баритовые, апатитовые, фосфоритовые, графитовые, тальковые и другие.

К нерудным относится сырье для производства строительных материалов (песок, глина, гравий, строительный камень, цементное сырье и другие).

К горючим относятся ископаемое твердое топливо, нефть и природный горючий газ.

Ценными компонентами называются отдельные химические элементы или минералы, входящие в состав полезного ископаемого и представляющие интерес ля их дальнейшего использования.

Полезными примесями называют отдельные химические элементы или их природные соединения, которые входят в состав полезного ископаемого в небольших количествах и могут быть выделены и использованы совместно с основным ценным компонентом, улучшая его качество. Например: полезными примесями в железных рудах являются хром, вольфрам, ванадий, марганец и другие.

Сопутствующими компонентами называются ценные химические элементы и отдельные минералы, содержащиеся в полезных ископаемых в сравнительно небольших количествах, выделяемые при обогащении попутно в самостоятельный или комплексный продукт совместно с основным ценным компонентом, и извлекаемые из него в дальнейшем в процессе металлургической плавки или химической переработки. Например: в некоторых рудах цветных металлов сопутствующими являются золото, серебро, молибден и другие.

Вредными примесями называют отдельные примеси и элементы, или природные химические соединения, содержащиеся в полезных ископаемых и оказывающие отрицательное влияние в полезных ископаемых на качество извлекаемых ценных компонентов.

2. По составу руды бывают простые (полезный компонент представлен одним минералом) и сложные (полезный компонент представлен различными по свойствам минералами).

Минералы, не содержащие ценных компонентов, называют пустой породой. При обогащении они удаляются в отходы (хвосты) совместно с вредными примесями.

В результате обогащения основные составные компоненты полезного ископаемого могут выделяться в виде самостоятельных продуктов: концентратов (одного или нескольких) и хвостов. Кроме того, в процессе обогащения из полезного ископаемого могут выделяться так же промежуточные продукты.

Источниками добычи цветных и редких металлов являются месторождения руд или полезных ископаемых, содержащие один или несколько ценных металлов (компонентов), представленных со­ответствующими минералами в сочетании с вмещающей породой. В очень редких случаях в земной коре встречаются самородные эле­менты (медь, золото, серебро) в виде зерен, имеющих кристалличе­ское или аморфное строение. Содержание золота и серебра в руде очень низкое, всего несколько граммов на 1 т руды. На 1 г золота в земной коре приходится около 2 т породы.

Руда - это такая порода, из которой на данном этапе развития техники экономически выгодно извлекать ценные компоненты. Руда состоит из отдельных минералов; те из них, которые надо извлечь, называют ценными (полезными), а те, которые в данном случае не используются, являются минералами вмещающей (пустой) породы.

Однако понятие «пустая порода» условно. По мере развития техники обогащения и способов последующей переработки получае­мых при обогащении продуктов минералы пустой породы, содержа­щиеся в руде, становятся полезными. Так, в апатитонефелиновой ру­де нефелин долгое время являлся минералом пустой породы, но по­сле того как была разработана технология получения глинозема из нефелиновых концентратов, он стал полезным компонентом.

По минеральному составу руды подразделяются на самород­ные, сульфидные, окисленные и смешанные.

Руды также разделяются на монометаллические и полиметаллические.

Монометаллические руды содержат только один ценный ме­талл. Полиметаллические - два и более, например, Си, РЬ, Zn, Fe и др. В природе полиметаллические руды встречаются значительно чаще, чем монометаллические. В большинстве руд содержится не­сколько металлов, но не все они имеют промышленное значение. В связи с развитием техники обогащения становится возможным из­влекать и те металлы, содержание которых в руде мало, но их попут­ное извлечение экономически целесообразно.

Различают также руды вкрапленные и сплошные. Во вкрап­ленных рудах зерна ценных минералов распределены в массе вме­щающей породы. Сплошные руды (колчеданные) состоят на 50...100 % из сульфидов, главным образом пирита (серного колчеда­на) и небольшого количества минералов вмещающей породы.

По размеру вкрапленности зерен полезных минералов руды бывают крупновкрапленные (> 2 мм), мелковкрапленные (0,2...2 мм), тонковкрапленные (< 0,2 мм) и весьма тонковкрапленные (< 0,02 мм). Последние являются труднообогатимыми рудами.

Месторождения промышленных руд по характеру происхож­дения бывают коренными и россыпными. Коренные месторождения залегают в месте первоначального образования. Ценные минералы и минералы вмещающей породы в этих рудах находятся в тесной ассо­циации между собой.

Россыпями называют вторичные месторождения, образовав­шиеся в результате разрушения первичных коренных месторождений и вторичного отложения материала из первичных руд. В россыпных месторождениях присутствуют несульфидные, труднорастворимые минералы в виде зерен округлой формы (скатанных). Сростки отсут­ствуют, что облегчает и удешевляет процесс обогащения россы­пей .

В земной коре содержится около 4 тысяч различных минера­лов, которые представляют собой более или менее устойчивые при­родные химические соединения. Одни из них, такие как кварц, поле­вые шпаты, алюмосиликаты, пирит составляют основную массу зем­ной коры, другие, например, минералы Сu, Рb, Zn, Мо, Ве, Sn нахо­дятся в больших количествах только в определенных участках - руд­ных телах, третьи, такие как германит (минерал германия), гринокит (минерал кадмия) встречаются еще реже, сопутствуя различным ми­нералам в рудах.

К сульфидным относятся минералы, представляющие собой соединения металлов с серой. Например, халькопирит СиРе$2 явля­ется основным минералом меди, сфалерит 2п8 - цинка, молибденит МоS 2 - молибдена.

К оксидам относится значительная часть цветных и редкометальных минералов, например, куприт Сu 2 О, ильменит FеТiО 3 , рутил ТiO 2 , касситерит SnО 2 .

Силикаты представляют собой самую большую группу мине­ралов, залегающих в земной коре. В верхней мантии земли они со­ставляют до 92 %. К силикатам относится основная масса минералов вмещающей (пустой) породы (непригодной для промышленного по­требления), а также минералы лития, бериллия, циркона и др. Среди силикатов наиболее распространен кварц SiO 2 ; его можно извлекать в самостоятельный продукт и использовать в производстве стекла, хрусталя, в строительной промышленности.

К алюмосиликатам относятся сподумен LiAlSi 2 О б и берилл Ве 3 Аl 6 О 18 , являющиеся основными минералами в производстве 1 лития и бериллия, а также шпаты, - альбит NaAlSiзО 8 и микроклин КАlSi 3 О 8 , - основные минералы вмещающей породы (в сред­нем 60 %).

К карбонатам относятся минералы, содержащие углекислоту: кальцит СаСОз (минерал вмещающей породы), церуссит РbСО 3 .

3. Месторождения промышленных руд по характеру происхожде­ния бывают коренными и россыпными. Коренными называют руды, залегающие в месте первоначального образования и расположенные внутри общего массива горных пород. Эти руды после добычи из шахты или из открытого рудника требуют пред­варительно перед обогащением дробления и измельчения. Ценные минералы и минералы пустой породы в таких рудах находятся в тесной ассоциации между собой.

Россыпями называют вторичные месторождения, образова­вшиеся в результате разрушения руд первичных коренных место­рождений и вторичного отложения материала из первичных руд. В россыпях минералы претерпели очень сильные изменения по химическому составу и физическим свойствам. Все минералы и крупные куски руды подверглись разрушению водными пото­ками, выветриванию, изменениям температуры, воздействию хи­мических соединений и т. п.

Речными водными потоками или волнами моря и океана куски руды и минералы обычно переносятся на большие расстояния. Перекатываясь, они принимают округлую форму. Сульфиды при этом разрушаются и в месторождениях полностью отсутствуют, а несульфидные труднорастворимые минералы освобождаются от сростков с минералами пустой породы (песок, галечник). Поэтому руды россыпных месторождений не подвергают дробле­нию и измельчению, и процессы обогащения их значительно проще и дешевле.

С помощью обогащения удаляют вредные примеси из концентратов, поступающих на металлургический завод, затрудняющие процессы плавки и ухудшающие качество получаемых металлов. Удаление вредных примесей позволяет значительно улучшить технико-экономические показатели металлургических процессов. Например, вредной примесью в свинцовом концентрате является цинк. Повышение содержания его в свинцовом концентрате с 10 до 20% увеличивает потери свинца при плавке почти в 2 раза. В процессе обогащения руды получают концентраты (один или несколько), отвальные хвосты и промежуточные продукты.

Концентраты – продукты, в которых сосредоточено основное количество того или иного ценного компонента. Концентраты, по сравнению с обогащаемой рудой характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей.

Промпродукты – продукты, получаемые при обогащении полезных ископаемых и представляющие собой смесь зерен, содержащих полезные компоненты, с зернами пустой породы. Промпродукты характеризуются более низким по сравнению с концентратами и более высоким по сравнению с хвостами содержанием полезных компонентов.

Хвосты – продукты, в которых сосредоточено основное количество пустой породы, вредных примесей и небольшое (остаточное) количество полезного компонента.

Обогащением полезных ископаемых называют совокупность процессов первичной обработки минерального сырья из недр, в результате которых происходит отделение полезных компонентов (минералов) от пустой породы.

Концентраты и хвосты являются окончательными продуктами, а промежуточные продукты - оборотными. Качество концент­ратов, выдаваемых обогатительными фабриками, должно отвечать требованиям, определяемым ГОСТами или техническими усло­виями. Эти требования зависят от назначения концентратов и условий их дальнейшей переработки. В ГОСТах указано наимень­шее допустимое содержание полезного компонента и наибольшее допустимое содержание вредных примесей для концентратов раз­личных сортов.

Результаты обогащения оцениваются несколькими показате­лями и прежде всего полнотой извлечения ценных компонентов и качеством получаемых концентратов.

Извлечением называется отношение количества по­лезного компонента, переведенного в концентрат, к его коли­честву в руде, выраженное в процентах. Извлечение характеризует полноту перевода полезного компонента из руды в концентрат и является одним из важнейших технологических показателей работы обогатительной фабрики.

Выходом называется отношение массы какого-либо про­дукта обогащения к массе переработанной руды, выраженной в процентах.

4.

Обогащением руд называется совокуп­ность процессов первичной обработки ми­нерального сырья, имеющих целью отде­ление всех полезных минералов (а при необ­ходимости и их взаимное разделение) от пустой породы. В результате обогащения получают один или несколько богатых концентратов и отвальные хвосты. Концентрат содержит в десятки, иногда и в сотни раз больше полезного минерала по сравнению рудой. Он пригоден для металлургической переработки или может служить сырьем для других отраслей промышленности. Отвальные хвосты содержат главным образом минералы пустой породы, которые при данных технико-экономических условиях извлекать нецелесообразно или же в этих минералах нет по­требности.

Необходимость процессов обогащения полезных ископаемых подтверждается зависимостью технико-экономических показате­лей металлургической переработки от содержания металла в сырье, поступающем в плавку.

Еще больший экономический эффект получается при обогащении бедных руд, содержащих редкие и другие дорогостоящие металлы (молибден, олово, тантал, ниобий и др.).

Значение обогащения полезных ископаемых обуславливается тем, что:

во первых – во многих случаях лишь после него становятся возможными многие технологические процессы (металлургические, химические и другие);

во вторых – переработка обогащаемого продукта осуществляется с большим экономическим эффектом, чем природного: уменьшается объем перерабатываемого материала, улучшается качество готовой продукции, сокращаются потери ценного компонента с отходами производства и расходы на транспортирование сырья, повышается производительность труда, снижаются расходы топлива, электроэнергии и т. д.

Технология обогащения полезных ископаемых состоит из ряда последовательных операций, осуществляемых на обогатительных фабриках.

Обогатительными фабриками называют промышленные предприятия, на которых методами обогащения обрабатывают полезные ископаемые и выделяют из них один или несколько товарных продуктов с повышенным содержанием ценных компонентов и пониженным содержанием вредных примесей. Современная обогатительная фабрика – это высокомеханизированное предприятие со сложной технологической схемой переработки полезного ископаемого.

Технологическая схема включает сведения о последовательности технологических операций по переработки полезных ископаемых на обогатительной фабрике.

Выводы:

Источником добычи цветных и редких металлов являются месторождения руд или полезных ископаемых, содержащих один или несколько цветных или редких металлов, представленных соответствующими минералами в сочетании с минералами пустой породы.

В очень редких случаях встречаются в земной коре самород­ные элементы (медь, золото, серебро и сера). Обычно они образуют различные химические соединения - минералы, являющиеся есте­ственными продуктами процессов, происходящих в земной коре. Самородные элементы встречаются главным образом в твердом состоянии и представляют собой зерна, имеющие кристаллическое или аморфное строение.

Полезные ископаемые - это природные мине­ральные вещества, которые при данном уровне и состоянии тех­ники могут быть с достаточной эффективностью использованы в народном хозяйстве в естественном виде или после предваритель­ной обработки.

Ископаемые, добываемые из недр земли, бывают твердыми (руда, уголь, торф), жидкими (нефть) и газообразными (природ­ные газы).

По вещественному составу металлические полезные ископа­емые подразделяются на руды черных, цветных, ред­ких, благородных и радиоактивных металлов.

По минеральному составу руды подразделяются на само­родные, сульфидные, окисленные и сме­шанные.

Концентраты и хвосты являются окончательными продуктами, а промежуточные продукты - оборотными. Качество концент­ратов, выдаваемых обогатительными фабриками, должно отвечать требованиям, определяемым ГОСТами или техническими усло­виями.

Из руд цветных и редких металлов, обычно содержащих очень небольшой процент полезного минерала, выплавлять металл без предварительного обогащения экономически невыгодно, а часто и практически невозможно. Поэтому более 95% добываемых руд подвергаются обогащению.

Контрольные вопросы:

1.
На какие группы подразделяются полезные ископаемые?

2.
Что такое руда и какие руды относят к металлическим, неметаллическим, нерудным, горючим?

3.
Что называют ценными компонентами, полезными примесями, сопутствующими компонентами, вредными примесями?

4.
Основное значение обогащения полезных ископаемых и обогатительных фабрик.

5. На какие составляющие делятся руды?

6. Простые и сложные руды.

Что называют концентратом, промпродуктами и хвостами?

Что такое обогащение полезных ископаемых?

Как характеризуются месторождения?

Каковы основные показатели экономической выгоды обогащения полезных ископаемых?

Домашнее задание :

1.
Подготовиться к опросу по заданной лекционной теме.

2.
Подготовить краткий тезис по тематике семинарского задания.

3.
Ответить на вопросы к лекции.

КЛАССИФИКАЦИЯ ПРОЦЕСОВ ОБОГАЩЕНИЯ.

Цель: Знание краткого описания процессов обогащения, для первичного восприятия студентами данного предмета.

План:

1.
Общие сведения по классификации процессов обогащения.

2.
Краткая характеристика основных процессов обогащения.

3.
Краткая характеристика специальных методов обогащения.

4.
Технологические показатели обогащения

Ключевые слова: основные процессы, специальные, грохочение; дробление; измельчение; классификация, гравитационные процессы обогащения; флотационные методы; магнитные методы обогащения; электрическое обогащение, ручная и механизированная рудоразработка, пробовыработка, декрипитация, радиометрические методы обогащения.

1.

Обогащение полезных ископаемых является весьма важным аспектом в добыче и переработки руд. Оно подразделяется на множество методов обогащения, что подразумевает под собой наиболее качественный и полный процесс обогащения.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зерна ценных мине­ралов.

К собственно обо­гатительным про­цессам относятся про­цессы разделения руды и других продуктов по физи­ческим и физико-химическим свойствам минералов, входя­щих в их состав. К этим процессам относятся гравита­ционное обогащение, флота­ция, магнитная и электри­ческая сепарация и др.

Большинство процессов обогащения проводится в во­де и получаемые продукты содержат большое количе­ство ее. Поэтому возникает необходимость во вспомогательных процессах. К ним относится обезвоживание продуктов обогащения, включающее сгущение, фильтрование и сушку.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически. В зависи­мости от назначения схемы могут быть качественными, количе­ственными, шламовыми. Кроме указанных схем обычно соста­вляют схемы цепи аппаратов.

Таким образом, обогащение полезных ископаемых можно разделить на основные и вспомогательные процессы (методы) обогащения.

К основным методам обогащения относятся:

1.грохочение; 2.дробление; 3.измельчение; 4.классификация; 5.гравитационные процессы обогащения; 6.флотационные методы; 7.магнитные методы обогащения; электрическое обогащение.

К вспомогательным методам относят:

1.ручную и механизированную рудоразработку и промывку. Избирательное дробление и декрипитацию;

2.обогащение по трению, форме и упругости;

3.радиометрические методы обогащения;

4. химические методы обогащения.

2 Грохочением называют процесс разделения кусковых и зернистых материалов на продукты различной крупности, называемые классами, с помощью просеивающих поверхностей с калиброванными отверстиями (колосниковые решетки, листовые и проволочные решета).

В результате грохочения исходный материал разделяется на надрешетный (верхний) продукт, зерна (куски) которого больше размера отверстий просеивающей поверхности, и подрешетный (нижний продукт), зерна (куски) которого меньше размера отверстий просеивающей поверхности.

Дробление и измельчение – процесс разрушения полезных ископаемых под действием внешних сил до заданной крупности, требуемого гранулометрического состава или необходимой степени раскрытия материалов. При дроблении и измельчении нельзя допускать переизмельчения материалов, так как это ухудшает процесс обогащения полезного ископаемого.

Классификация – процесс разделения смеси минеральных зерен на классы различной крупности по скоростям их осаждения в водной или воздушной средах. Классификация осуществляется в специальных аппаратах, называемых классификаторами, если разделение происходит в водной среде (гидроклассификация), и воздушными сепараторами, если разделение происходит в воздушной среде.

Гравитационными процессами обогащения называют процессы обогащения, в которых разделение минеральных частиц, отличающихся плотностью, размером или формой, обусловлено различием в характере и скорости их движения в среде под действием силы тяжести и сил сопротивления.

К гравитационным процессам относятся отсадка, обогащение в тяжелых средах, концентрация на столах, обогащение в шлюзах, желобах, струйных концентраторах, конусных, винтовых и противоточных сепараторах, пневматическое обогащение.

Флотационные методы обогащения – процесс разделения тонкоизмельченных полезных ископаемых, осуществляемый в водной среде и основанный на различии их способности, естественной или искусственно создаваемой, смачиваться водой, что определяет избирательное прилипание частиц минералов к поверхности раздела двух фаз. Большую роль при флотации играют флотационные реагенты – вещества, позволяющие процессу идти без особых осложнений и ускоряющие сам процесс флотации, а так же выход концентрата.

Магнитные методы обогащения полезных ископаемых основаны на различии магнитных свойств разделяемых минералов. Разделение по магнитным свойствам осуществляется в магнитных полях.

При магнитном обогащении используются только неоднородные магнитные поля. Такие поля создаются соответствующей формой и расположением полюсов магнитной системы сепаратора. Таким образом магнитное обогащение осуществляется в специальных магнитных сепараторах.

Электрическим обогащением называется процесс разделения минералов в электрическом поле, основанный на различии их электрических свойств. Этими свойствами являются электропроводность, диэлектрическая проницаемость, трибоэлектрический эффект.

3. Ручная рудоразработка и породовыборка как способ обогащения основаны на использовании различия во внешних признаках разделяемых минералов – цвете, блеске, форме зерен. Из общей массы полезного ископаемого отбирают обычно тот материал, которого содержится меньше. В том случае, когда из полезного ископаемого отбирается ценный компонент, операция называется рудоразработкой, когда пустая порода – породовыработкой.

Декрипитация основана на способности отдельных минералов растрескиваться (разрушаться) при их нагревании и последующем быстром охлаждении.

Обогащение по трению, форме и упругости основано на использовании различий в скоростях движения разделяемых частиц по плоскости под действием сил тяжести. Основным параметром движения частиц по наклонной плоскости, является коэффициент трения, зависящий в основном от характера поверхности самих частиц и их формы.

Адиометрическая сортировка , основанная на различии радиоактивных свойств минералов или силе их излучения

Радиометрические методы обогащения основаны на различной способности минералов, испускать, отражать, или поглощать различные виды излучения.

К химическим методам обогащения относят процессы, связанные с химическими превращениями минералов (или только их поверхности) в другие химические соединения, в результате чего изменяются их свойства, или с переводом минералов из одного состояния в другое.

Химическое и бактериальное обогащение, основанное на спо­собности минералов, например сульфидов, окисляться и раство­ряться в сильно кислых растворах. При этом металлы переходят в раствор, из которого извлекаются различными химико-металлур­гическими методами. Присутствие в растворах некоторых типов бактерий, например тионовых, значительно интенсифицирует процесс растворения минералов.

В технологических схемах обогащения сложных комплексных руд часто используют одновременно два или три различных ме­тода обогащения, например: гравитационный и флотационный, гравитационный и магнитный и т. п. Применяются также комби­нированные методы обогащения в сочетании с гидрометаллурги­ческими.

Для успешного применения того или иного метода обогащения необходимо наличие у минералов достаточного различия тех свойств, которые используются в данном методе.

4. Процесс обогащения характеризуется следующими техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла.

Содержание металла в руде или продукте обогащения - это отношение массы этого металла в руде или продукте обогащения к массе сухой руды или продукта, выраженное в процентах. Содержание металла принято обозначать греческими буквами α (в исходной руде), β (в концентрате) и θ (в хвостах). Содержание драгоценных металлов выражается обычно в единицах массы (г/т).

Выход продукта - отношение массы продукта, полученного -при обогащении, к массе переработанной исходной руды, выражен­ное в долях единицы или процентах. Выход концентрата (γ) показы­вает, какую долю от общего количества руды составляет концентрат.

Степень сокращения - величина, обозначающая во сколько раз выход полученного концентрата меньше количества перерабо­танной руды. Степень сокращения (К) выражает количество тонн; руды, которое нужно переработать, чтобы получить 1 т концентрата, и рассчитывается по формуле:

К= 100/ γ

Для руд цветных и редких металлов характерен малый выход концентрата и, следовательно, высокая степень сокращения. Выход концентрата определяется прямым взвешиванием или по данным химического анализа по формуле:

γ =(α - θ/β - θ)100,%.

Степень обогащения, или степень концентрации показывает, во сколько раз увеличилось содержание металла в кон­центрате по сравнению с содержанием металла в руде. При обогаще­нии бедных руд этот показатель может составлять 1000... 10000.

Извлечение металлаε - это отношение массы металла в кон­центрате к массе металла в исходной руде, выраженное в процентах

ε=γβ/α

Уравнение баланса металла

εα=γβ

связывает основные технологические показатели процесса и позволяет рассчитать степень извлечения металла в концентрат, которая, в свою очередь, показывает полноту перехода металла из руды в концентрат.

Выход продуктов обогащения можно определить по данным химических анализов продуктов. Если обозначить:- выход концентрата; - содержание металла в руде; - содержание металла в концентрате; - содержание металла в хвостах, а - извлечение металла в концентрат, то можно составить баланс металла по руде и продуктам обогащения, т. е. коли­чество металла в руде равно сумме его количеств в концентрате и хвостах

Здесь за 100 принят выход исходной руды в процентах. Отсюда выход концентрата

Извлечение металла в концентрат можно подсчитать по формуле

Если выход концентрата неизвестен, то

Например, при обогащении свинцовой руды, содержащей 2,5% свинца, получен концентрат с содержанием 55% свинца и хвосты, содержащие 0,25% свинца. Подставляя результаты химических анализов в приведенные выше формулы, получим:

выход концентрата

извлечение в концентрат

выход хвостов

степень обогащения:

Качественно-количественные показатели обогащения харак­теризуют техническое совершенство технологического процесса на фабрике.

Качество конечных продуктов обогащения должно соответство­вать требованиям, предъявляемым потребителями к их химическому составу. Требования к качеству концентратов называются кондициями и регламентируются ГОСТ, техническими условиями (ТУ) или временными нормами и разрабатываются с учетом технологии и экономики I переработки данного сырья и его свойств. Кондициями устанавливается минимально или максимально допустимое содержание различных со­ставных компонентов полезного ископаемого в конечных продуктах обогащения. Если качество продуктов соответствует кондициям, то эти продукты называются кондиционными.

Выводы:

Обогатительная фабрика является промежуточным звеном между рудником (шахтой) и металлургическим заводом. Руда различной крупности, поступающая с рудника, при переработке на обогатительной фабрике проходит различные процессы, которые по своему назначению можно разделить на подготовитель­ные, собственно обогатительные и вспомогательные.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зе

Горную массу, подразделяют на: основные (собственно обогатительные); подготовительные и вспомогательные.

Все существующие методы обогащения основаны на различиях в физических или физико-химических свойствах отдельных компонентов полезного ископаемого. Существует, например, гравитационное , магнитное , электрическое , флотационное , бактериальное и др. способы обогащения.

Технологический эффект обогащения

Предварительное обогащение полезных ископаемых позволяет:

  • увеличить промышленные запасы минерального сырья за счёт использования месторождений бедных полезных ископаемых с низким содержанием полезных компонентов;
  • повысить продуктивность труда на горных предприятиях и снизить стоимость добываемой руды за счёт механизации горных работ и сплошной выемки полезного ископаемого вместо выборочной;
  • повысить технико-экономические показатели металлургических и химических предприятий при переработке обогащённого сырья за счёт снижения затрат топлива, электроэнергии, флюсов, химических реактивов, улучшения качества готовых продуктов и снижения потерь полезных компонентов с отходами;
  • осуществить комплексное использование полезных ископаемых, потому что предварительное обогащение позволяет извлечь из них не только основные полезные компоненты, но и сопутствующие, которые содержатся в малых количествах;
  • снизить затраты на транспортировку к потребителям продукции горного производства за счёт транспортирования более богатых продуктов, а не всего объёма добытой горной массы, содержащей полезное ископаемое;
  • выделить из минерального сырья вредные примеси, которые при дальнейшей их переработке могут ухудшать качество конечной продукции, загрязнять окружающую среду и угрожать здоровью людей.

Переработка полезных ископаемых осуществляется на обогатительных фабриках , представляющих собой сегодня мощные высокомеханизированные предприятия со сложными технологическими процессами.

Классификация процессов обогащения

Переработка полезных ископаемых на обогатительных фабриках включает ряд последовательных операций, в результате которых достигается отделение полезных компонентов от примесей. По своему назначению процессы переработки полезных ископаемых разделяют на подготовительные, основные (обогатительные) и вспомогательные (заключительные).

Подготовительные процессы

Подготовительные процессы предназначены для раскрытия или открытия зёрен полезных компонентов (минералов), входящих в состав полезного ископаемого, и деления его на классы крупности, удовлетворяющие технологическим требованиям последующих процессов обогащения. К подготовительным относят процессы дробления, измельчения, грохочения и классификации.

Дробление и измельчение

Дробление и измельчение - процесс разрушения и уменьшения размеров кусков минерального сырья (полезного ископаемого) под действием внешних механических, тепловых, электрических сил, направленных на преодоления внутренних сил сцепления, связывающих между собой частички твёрдого тела.

По физике процесса между дроблением и измельчением нет принципиальной разницы. Условно принято считать, что при дроблении получают частицы крупнее 5 мм , а при измельчении - мельче 5 мм . Размер наиболее крупных зёрен, до которого необходимо раздробить или измельчить полезное ископаемое при его подготовке к обогащению, зависит от размера включений основных компонентов, входящих в состав полезного ископаемого, и от технических возможностей оборудования, на котором предполагается проводить следующую операцию переработки раздробленного (измельчённого) продукта.

Раскрытие зёрен полезных компонентов - дробления или (и) измельчения сростков до полного освобождения зёрен полезного компонента и получения механической смеси зёрен полезного компонента и пустой породы (микста). Открытие зёрен полезных компонентов - дробление или (и) измельчения сростков до высвобождения части поверхности полезного компонента, что обеспечивает доступ к нему реагента.

Дробление проводят на специальных дробильных установках . Дроблением называется процесс разрушения твердых тел с уменьшением размеров кусков до заданной крупности, путём действия внешних сил, преодолевающих внутренное силы сцепления, связывающие между собой частицы твердого вещества. Измельчение дроблёного материала осуществляют в специальных мельницах (как правило, шаровых или стержневых).

Грохочение и классификация

Грохочение и классификация применяются с целью разделения полезного ископаемого на продукты разной крупности - классы крупности . Грохочение осуществляется рассеванием полезного ископаемого на решето и ситах с калиброванными отверстиями на мелкий (подрешётный) продукт и крупный (надрешётный). Грохочение применяется для разделения полезных ископаемых по крупности на просевных (просеивающих) поверхностях, с размерами отверстий от миллиметра до нескольких сотен миллиметров.

Грохочение осуществляется специальными машинами - грохотами .

Полезные ископаемые, компоненты которых имеют различия в электропроводности или имеют способность под действием тех или иных факторов приобретать разные по величине и знаку электрические заряды , могут обогащаться способом электрической сепарации . К таким полезным ископаемым относятся апатитовые , вольфрамовые , оловянные и другие руды.

Обогащение по крупности используется в тех случаях, когда полезные компоненты представлены более крупными или, наоборот, более мелкими зёрнами в сравнении с зёрнами пустой породы. В россыпях полезные компоненты находятся в виде мелких частичек, поэтому выделение крупных классов позволяет избавиться от значительной части породных примесей.

Различия в форме зёрен и коэффициенте трения позволяют отделять плоские чешуйчатые частички слюды или волокнистые агрегаты асбеста от частичек породы, которые имеют округлую форму. При движении по наклонной плоскости волокнистые и плоские частички скользят, а округлые зёрна скатываются вниз. Коэффициент трения качения всегда меньше коэффициента трения скольжения, поэтому плоские и округлые частички движутся по наклонной плоскости с разными скоростями и по разным траекториям, что создаёт условия для их разделения.

Различия в оптических свойствах компонентов используется при обогащении полезных ископаемых способом фотометрической сепарации . Этим способом осуществляется механическое рудоразделение зёрен, имеющих разный цвет и блеск (например, отделение зёрен алмазов от зёрен пустой породы).

Основные заключительные операции - сгущение пульпы , обезвоживание и сушка продуктов обогащения. Выбор метода обезвоживания зависит от характеристик материала, который обезвоживается, (начальной влажности, гранулометрического и минералогического составов) и требований к конечной влажности. Часто необходимой конечной влажности трудно достичь за одну стадию, поэтому на практике для некоторых продуктов обогащения используют операции обезвоживания разными способами в несколько стадий.

Отходы

Отходы - конечные продукты обогащения с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически и/или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты , но не термину хвосты , которым, в отличие от отходов, называют обеднённый продукт любой отдельно взятой обогатительной операции).

Промежуточные продукты

Промежуточные продукты (промпродукты) - это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения

Качество полезных ископаемых и продуктов обогащения определяется содержанием и извлечением ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых

Частичное обогащение - это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения зольности неклассифицированного энергетического угля путём выделения и обогащения крупного класса с дальнейшим смешиванием полученного концентрата и мелкого необогащённого отсева.

Потери полезных ископаемых при обогащении

Под потерями полезного ископаемого при обогащении понимается количество пригодного для обогащения полезного компонента, которое теряется с отходами обогащения вследствие несовершенства процесса или нарушения технологического режима.

Установлены допустимые нормы взаимозасорения продуктов обогащения для разных технологических процессов, в частности, для обогащения угля. Допустимый процент потерь полезного ископаемого сбрасывается с баланса продуктов обогащения для покрытия расхождений при учёте массы влаги, выноса полезных ископаемых с дымовыми газами сушилен, механических потерь.

Граница обогащения полезных ископаемых

Граница обогащения полезных ископаемых - это наименьший и наибольший размеры частичек руды, угля, эффективно обогащаемых в обогатительной машине.

Глубина обогащения

Глубина обогащения - это нижняя граница крупности материала, который подлежит обогащению.

При обогащении угля применяются технологические схемы с границами обогащения 13; 6; 1; 0,5 и 0 мм. Соответственно выделяется необогащённый отсев крупностью 0-13 или 0-6 мм, или шлам крупностью 0-1 или 0-0,5 мм. Граница обогащения 0 мм означает, что все классы крупности подлежат обогащению.

Международные конгрессы

С 1952 года проводятся Международные конгрессы по обогащению полезных ископаемых. Ниже приведён их список .

Конгресс Год Место проведения
I 1952 Лондон
II 1953 Париж
III 1954 Гослар
IV 1955 Стокгольм
V 1960 Лондон
VI 1963 Кан
VII 1964 Нью-Йорк
VIII 1968 Ленинград
IX 1970 Прага
X 1973 Лондон
XI 1975 Кальяри
XII 1975 Сан-Паулу
XIII 1979 Варшава
XIV 1982 Торонто
XV 1985 Кан
XVI 1988 Стокгольм
XVII 1991 Дрезден
XVIII 1993 Сидней
XIX 1995

По виду среды, в которой производят обогащение, различают обогащение:

сухое обогащение (в воздухе и аэросуспензии),

мокрое (в воде, тяжёлых средах),

в гравитационном поле,

в поле центробежных сил,

в магнитном поле,

в электрическом поле.

Гравитационные методы обогащения основываются на различии в плотности, крупности и скорости движения кусков породы в водной или воздушной среде. При разделении в тяжёлых средах преимущественное значение имеет разница в плотности разделяемых компонентов.

Для обогащения наиболее мелких частиц применяют способ флотации, основанный на разнице в поверхностных свойствах компонентов (избирательной смачиваемости водой, прилипании частиц минерального сырья к пузырькам воздуха).

Продукты обогащения полезных ископаемых

В результате обогащение полезное ископаемое разделяется на несколько продуктов: концентрат (один или несколько) и отходы. Кроме того, в процессе обогащения могут быть получены промежуточные продукты.

Концентраты

Концентраты -- продукты обогащения, в которых сосредоточено основное количество ценного компонента. Концентраты в сравнении с обогащаемым материалом характеризуются значительно более высоким содержанием полезных компонентов и более низким содержанием пустой породы и вредных примесей.

Отходы -- продукты с малым содержанием ценных компонентов, дальнейшее извлечение которых невозможно технически или нецелесообразно экономически. (Данный термин равнозначен употреблявшемуся ранее термину отвальные хвосты, но не термину хвосты, которые, в отличие от отходов, присутствуют практически в каждой операции обогащения)

Промежуточные продукты

Промежуточные продукты (промпродукты) -- это механическая смесь сростков с раскрытыми зёрнами полезных компонентов и пустой породы. Промпродукты характеризуются более низким в сравнении с концентратами и более высоким в сравнении с отходами содержанием полезных компонентов.

Качество обогащения

Качество полезных ископаемых и продуктов обогащения определяется содержанием ценного компонента, примесей, сопутствующих элементов, а также влажностью и крупностью.

Обогащение полезных ископаемых идеальное

Под идеальным обогащением полезных ископаемых (идеальным разделением) понимается процесс разделения минеральной смеси на компоненты, при котором полностью отсутствует засорение каждого продукта посторонними для него частичками. Эффективность идеального обогащения полезных ископаемых составляет 100 % по любым критериям.

Частичное обогащение полезных ископаемых

Частичное обогащение - это обогащение отдельного класса крупности полезного ископаемого, или выделение наиболее легко отделяемой части засоряющих примесей из конечного продукта с целью повышения концентрации в нём полезного компонента. Применяется, например, для снижения зольности неклассифицированного энергетического угля путём выделения и обогащения крупного класса с дальнейшим смешиванием полученного концентрата и мелкого необогащённого отсева.

Потери полезных ископаемых при обогащении

Под потерями полезного ископаемого при обогащении понимается количество пригодного для обогащения полезного компонента, которое теряется с отходами обогащения вследствие несовершенства процесса или нарушения технологического режима.

Установлены допустимые нормы взаимозасорения продуктов обогащения для разных технологических процессов, в частности, для обогащения угля. Допустимый процент потерь полезного ископаемого сбрасывается с баланса продуктов обогащения для покрытия расхождений при учёте массы влаги, выноса полезных ископаемых с дымовыми газами сушилен, механических потерь.

Граница обогащения полезных ископаемых

Граница обогащения полезных ископаемых -- это наименьший и наибольший размеры частичек руды, угля, эффективно обогащаемых в обогатительной машине.

Глубина обогащения

Глубина обогащения - это нижняя граница крупности материала, который подлежит обогащению.

При обогащении угля применяются технологические схемы с границами обогащения 13; 6; 1; 0,5 и 0 мм. Соответственно выделяется необогащённый отсев крупностью 0-13 или 0-6 мм, или шлам крупностью 0-1 или 0-0,5 мм. Граница обогащения 0 мм означает, что все классы крупности подлежат обогащению.

7. Что подразумевается под терминами химическое и радиометрическое обогащение?

8. Что называется обогащением по трению, декрипитацией?

9. Какие формулы технологических показателей обогащения?

10. Какова формула степени сокращения?

11. Как вычислить степень обогащения руды?

Темы семинаров:

Основная характеристика методов обогащения.

Основные отличия от подготовительных, вспомогательных и основных методов обогащения.

Краткая характеристика основных методов обогащения.

Краткая характеристика подготовительных и вспомогательных методов обогащения.

Степень сокращения проб, основная роль данного метода при обогащении полезных ископаемых.

Домашнее задание :

Изучить термины, правила и основные методы обогащения, закрепить, полученные знания на семинарском занятии самостоятельно.

ЛЕКЦИЯ №3.

ТИПЫ И СХЕМЫ ОБОГАЩЕНИЯ И ИХ ПРИМЕНЕНИЕ.

Цель: Объяснить студентам основные типы и схемы обогащения и применение таких схем на производстве. Дать понятие о методах и процессах обогащения полезных ископаемых.

План:

Методы и процессы обогащения полезных ископаемых, область их применения.

Обогатительные фабрики и их промышленное значение. Основные типы технологических схем.

Ключевые слова: основные процессы, вспомогательные процессы, подготовительные методы, применение процессов, схема, технологическая схема, количественная, качественная, качественно-количественная, водно-шламовая, схема цепи аппаратов.

1. На обогатительных фабриках полезные ископаемые подвергаются последовательным процессам переработки, которые по назначению в технологическом цикле фабрики разделяются на подготовительные, собственно обогатительные и вспомогательные.

К подготовительным операциям обычно относят дробление, измельчение, грохочение и классификацию, т.е. процессы, в результате которых достигается раскрытие минерального состава, пригодной для их последующего разделения в процессе обогащения, а так же операции усреднения полезных ископаемых, которые могут проводиться на рудниках, карьерах, в шахтах и на обогатительных фабриках. При дроблении и измельчении достигается уменьшение крупности кусков руды и раскрытие минералов в результате разрушения сростков полезных минералов с пустой породой (или сростков одних ценных минералов с другими). Грохочение и классификация применяются для разделения по круп­ности полученных при дроблении и измельчении механических сме­сей. Задача подготовительных процессов - доведение минерального сырья до крупности, необходимой для последующего обогащения.



К основным обогатительным операциям относят те физические и физико-химические процессы разделения минералов, при которых полезные минералы выделяются в концентраты, а пустая порода – в хвосты.К основнымобогатительным процессам, относятся процессы разделения минералов по физическим и физико-химическим свойствам (по фор­ме, плотности, магнитной восприимчивости, электропроводности, смачиваемости, радиоактивности и др.): сортировка, гравитация, магнитное и электрическое обогащение, флотация, радиометриче­ское обогащение и др. В результате проведения основных процессов получают концентраты и хвосты. Применение того или другого спо­соба обогащения зависит от минералогического состава руды.

К вспомогательным процессам относят процедуры удаления влаги из продуктов обогащения. Такие процессы называются обезвоживанием, которое проводится с целью доведения влажности продуктов до установленных норм.

На обогатительной фабрике исходное сырье при обработке подвергается ряду последовательных технологических операций. Графическое изображение совокупности и последовательности этих операций так же называют технологической схемой обогащения.

При обогащении полезных ископаемых используют различия их физических и физико-химических свойств, существенное значение из которых имеют цвет, блеск, твердость, плотность, спайность, излом и т.д.

Цвет минералов разнообразен. Различие в цвете используется при ручной рудоразборке или пробовыборке из углей и других видах обработки.

Блеск минералов определяется характером их поверхностей. Различие в блеске можно использовать, как и в предыдущем случае, при ручной рудоразборке из углей или пробовыборке из углей и других видах обработки.

Твердость минералов, входящих в состав полезных ископаемых, имеет важное значение при выборе способов дробления и обогащения некоторых руд, а так же углей.

Плотность минералов изменяется в широких пределах. Различие в плотности полезных минералов и пустой породы широко используется при обогащении полезных ископаемых.

Спайность минералов заключается в их способности раскалываться от ударов по строго определенному направлению и образовывать по плоскостям раскола гладкие поверхности.

Излом имеет существенное практическое значение в процессах обогащения, так как характер поверхности минерала, полученного при дроблении и измельчении, оказывает влияние при обогащении электрическими и другими методами.

2. Технология обогащения полезных ископаемых состоит из ряда последовательных операций, осуществляемых на обогатительных фабриках.

Обогатительными фабриками называют промышленные предприятия, на которых методами обогащения обрабатывают полезные ископаемые и выделяют из них один или несколько товарных продуктов с повышенным содержанием ценных компонентов и пониженным содержанием вредных примесей. Современная обогатительная фабрика – это высокомеханизированное предприятие со сложной технологической схемой переработки полезного ископаемого.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически

Технологическая схема включает сведения о последовательности технологических операций по переработки полезных ископаемых на обогатительной фабрике.

Качественная схема содержит сведения о качественных измерениях полезного ископаемого, в процессе его переработки, а так же данные о режиме отдельных технологических операций. Качественная схема (рис. 1.) дает представление о приня­той технологии переработки руды, последовательности процессов и операций, которым подвергается руда при обогащении.

рис. 1. Качественная схема обогащения

Количественная схема включает количественные данные о распределении полезного ископаемого по отдельным технологическим операциям и выход получаемых продуктов.

Качественно–количественная схема совмещает в себе данные качественной и количественной схем обогащения.

Если в схеме имеются данные о количестве воды в от­дельных операциях и продук­тах обогащения, о количестве добавляемой воды в процесс, то схема называется шламовой. Распределение твердого и воды по операциям и продуктам ука­зывается в виде отношения твердого к жидкому Т: Ж, например, Т: Ж = 1: 3, или в процентах твердого, например 70% твердого. Соотношение Т:Ж численно равно коли­честву воды (м³), приходящейся на 1 т твердого. Количество воды, добавляемой в отдельные операции, выражается в куби­ческих метрах в сутки или в ку­бических метрах в час. Часто эти виды схем совмещаются и тогда схема называется качественно-количественной шламовой.

Вводно-шламовая схема содержит данные о соотношении воды и твердого в продуктах обогащения.

Схема цепи аппаратов – графическое изображение пути движения полезного ископаемого и продуктов обогащения через аппараты. На таких схемах аппараты, машины и транспортные средства изображаются условно и указывается их число, тип и размер. Движение продуктов от агрегата к агрегату обозначается стрелками (см. рис.2):

Рис. 2. Схема цепи аппаратов:

1,9- бункер; 2, 5, 8, 10, 11 - транспортер; 3, 6 - грохоты;

4 - щековая дробилка; 7 - конусная дробилка; 12 - классификатор;

13 - мельница; 14 - флотомашина; 15 - сгуститель; 16 - фильтр

По схеме на рисунке видно подробно, как руда проходит полное обогащение, включая подготовительные и основные процессы обогащения.

В качестве самостоятельных процессов чаще всего применяют флотацию, гравитационные и магнитные методы обогащения. Из двух возможных методов, дающих одинаковые показатели обогащения, обычно выбирают наиболее экономичный и экологически безопасный метод.

Выводы:

Процессы обогащения подразделяются на подготовительные, основные вспомогательные.

При обогащении полезных ископаемых используют различия их физических и физико-химических свойств, существенное значение из которых имеют цвет, блеск, твердость, плотность, спайность, излом и т.д.

Совокупность и последовательность операций, которым под­вергается руда при переработке, составляют схемы обога­щения, которые принято изображать графически. В зависи­мости от назначения схемы могут быть качественными, количе­ственными, шламовыми. Кроме указанных схем обычно соста­вляют схемы цепи аппаратов.

В качественной схеме обогащения изображается путь движе­ния руды и продуктов обогащения последовательно по операциям с указанием некоторых данных о качественных изменениях руды и продуктов обогащения, например, крупности. Качественная схема дает представление о стадиальности процесса, коли­честве перечистных операций концентратов и контрольных пере­чисток хвостов, о виде процесса, способе обработки промпродуктов и количестве конечных продуктов обогащения.

Если на качественной схеме указать количество перерабаты­ваемой руды, получаемых в отдельных операциях продуктов и со­держание в них ценных компонентов, то схема уже будет назы­ваться количественной или качественно-количественной.

Совокупность схем дает нам полное понятие о происходящем процессе обогащения и переработки полезных ископаемых.

Контрольные вопросы:

1. Что относится к подготовительным, основным и вспомогательным процессам обогащения?

2. Какие различия в свойствах минералов используются при обогащении полезных ископаемых?

3. Что называют обогатительными фабриками? Каково их применение?

4. Какие типы технологических схем Вы знаете?

5. Что такое схема цепи аппаратов.

6. Что означает качественная схема технологического процесса?

7. Как Вы можете охарактеризовать качественно-количественную схему обогащения?

8. Что означает водно-шламовая схема?

9. Какие характеристики можно получить, следуя технологическим схемам?



Вверх