Поверхностное натяжение жидкости. Давление Лапласа. Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Смачивание. Формула Лапласа. Капиллярные явления

При достаточно большом формула Бернулли дает громоздкие вычисления. Поэтому в таких случаях применяют локальную теорему Лапласа.

Теорема (локальная теорема Лапласа). Если вероятностьpпоявления события А в каждом испытании постоянна и отлична от 0 и 1, то вероятность
того, что событие А появится вnнезависимых испытаниях ровноkраз, приближенно равна значению функции:

,

.

Имеются таблицы, в которых находятся значения функции
, для положительных значенийx.

Заметим, что функция
четна.

Итак, вероятность того, что событие А появится в nиспытаниях ровноkраз приближенно равна

, где
.

Пример. На опытном поле посеяли 1500 семян. Найти вероятность того, что всходы дадут 1200 семян, если вероятность того, что зерно взойдет, равна 0,9.

Решение.

Интегральная теорема Лапласа

Вероятность того, что в nнезависимых испытаниях событие А появится не менееk1 раз и не болееk2 раз вычисляется по интегральной теореме Лапласа.

Теорема (интегральная теорема Лапласа). Если вероятность р наступления события а в каждом испытании постоянна и отлична от 0 и 1, то вероятность того, что событие А вnиспытаниях появится не менееk 1 раз и не болееk 2 раз приближенно равна значению определенного интеграла:

.

Функция
называется интегральной функцией Лапласа, она нечетна и ее значение находятся по таблице для положительных значенийx.

Пример. В лаборатории из партии семян, имеющих всхожесть 90%, высеяно 600 семян, давших всходы, не менее 520 и не более 570.

Решение.

Формула Пуассона

Пусть производится nнезависимых испытаний, вероятность появления события А в каждом испытании постоянна и равна р. Как мы уже говорили, вероятность появления события А вnнезависимых испытаниях ровноkраз можно найти по формуле Бернулли. При достаточно большомnиспользуют локальную теорему Лапласа. Однако, эта формула непригодна, когда вероятность появления события в каждом испытании мала или близка к 1. А при р=0 или р=1 вообще не применима. В таких случаях пользуются теоремой Пуассона.

Теорема (теорема Пуассона). Если вероятность р наступления события А в каждом испытании постоянна и близка к 0 или 1, а число испытаний достаточно велико, то вероятность того, что вnнезависимых испытаниях событие А появится ровноkраз находится по формуле:

.

Пример. Рукопись объемом в тысячу страниц машинописного текста содержит тысячу опечаток. Найти вероятность того, что наудачу взятая страница содержит хотя бы одну опечатку.

Решение.

Вопросы для самопроверки

    Сформулируйте классическое определение вероятности события.

    Сформулируйте теоремы сложения и умножения вероятностей.

    Дайте определение полной группы событий.

    Запишите формулу полной вероятности.

    Запишите формулу Бейеса.

    Запишите формулу Бернулли.

    Запишите формулу Пуассона.

    Запишите локальную формулу Лапласа.

    Запишите интегральную формулу Лапласа.

Тема 13. Случайная величина и ее числовые характеристики

Литература: ,,,,,.

Одним из основных понятий в теории вероятностей является понятие случайной величины. Так принято называть переменную величину, которая принимает свои значения в зависимости от случая. Различают два вида случайных величин: дискретные и непрерывные. Случайные величины принято обозначать X,Y,Z.

Случайная величина Х называется непрерывной (дискретной), если она может принимать лишь конечное или счетное число значений. Дискретная случайная величина Х определена, если даны все ее возможные значения х 1 , х 2 , х 3 ,…х n (число которых может быть как конечным, так и бесконечным) и соответствующие вероятности р 1 , р 2 , р 3 ,…р n .

Закон распределения дискретной случайной величины Х обычно задается таблицей:

Первая строка состоит из возможных значений случайной величины Х, а во второй строке указаны вероятности этих значений. Сумма вероятностей, с которыми случайная величина Х принимает все свои значения, равна единице, то есть

р 1 +р 2 + р 3 +…+р n =1.

Закон распределения дискретной случайной величины Х можно изобразить графически. Для этого в прямоугольной системе координат строят точки М 1 (х 1 ,р 1), М 2 (х 2 ,р 2), М 3 (х 3 ,р 3),…М n (x n ,p n) и соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения случайной величины Х.

Пример. Дискретная величина Х задана следующим законом распределения:

Требуется вычислить: а) математическое ожидание М(Х), б) дисперсию D(X), в) среднее квадратическое отклонение σ.

Решение. а) Математическое ожидание М(Х), дискретной случайной величины Х называется сумма попарных произведений всех возможных значений случайной величины на соответствующие вероятности этих возможных значений. Если дискретная случайная величина Х задана с помощью таблицы (1), то математическое ожидание М(Х) вычисляется по формуле

М(Х)=х 1 ∙р 1 +х 2 ∙р 2 +х 3 ∙р 3 +…+х n ∙p n . (2)

Математическое ожидание М(Х) называют также средним значением случайной величины Х. Применяя (2), получим:

М(Х)=48∙0,2+53∙0,4+57∙0,3 +61∙0,1=54.

б) Если М(Х) есть математическое ожидание случайной величины Х, то разность Х-М(Х) называется отклонением случайной величины Х от среднего значения. Эта разность характеризует рассеяние случайной величины.

Дисперсией (рассеянием) дискретной случайной величины Х называется математическое ожидание (среднее значение) квадрата отклонения случайной величины от ее математического ожидания. Таким образом, по самому определению имеем:

D(X)=M 2 . (3)

Вычислим все возможные значения квадрата отклонения.

2 =(48-54) 2 =36

2 =(53-54) 2 =1

2 =(57-54) 2 =9

2 =(61-54) 2 =49

Чтобы вычислить дисперсию D(X), составим закон распределения квадрата отклонения и затем применим формулу (2).

D(X)= 36∙0,2+1∙0,4+9∙0,3 +49∙0,1=15,2.

Следует отметить, что для вычисления дисперсии часто используют следующее свойство: дисперсия D(X) равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания, то есть

D(X)-M(X 2)- 2 . (4)

Чтобы вычислить дисперсию по формуле (4), составим закон распределения случайной величины Х 2:

Теперь найдем математическое ожидание М(Х 2).

М(Х 2)= (48) 2 ∙0,2+(53) 2 ∙0,4+(57) 2 ∙0,3 +(61) 2 ∙0,1=

460,8+1123,6+974,7+372,1=2931,2.

Применяя (4), получим:

D(X)=2931,2-(54) 2 =2931,2-2916=15,2.

Как видно, мы получили такой же результат.

в) Размерность дисперсии равна квадрату размерности случайной величины. Поэтому для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения более удобно рассматривать величину, которая равна арифметическому значению корня квадратного из дисперсии, то есть
. Эту величину называют средним квадратическим отклонением случайной величины Х и обозначают через σ. Таким образом

σ=
. (5)

Применяя (5), имеем: σ=
.

Пример. Случайная величина Х распределена по нормальному закону. Математическое ожидание М(Х)=5; дисперсияD(X)=0,64. Найти вероятность того, что в результате испытания Х примет значение в интервале (4;7).

Решение .Известно, что если случайная величина Х задана дифференциальной функциейf(x), то вероятность того, что Х примет значение, принадлежащее интервалу (α,β), вычисляется по формуле

. (1)

Если величина Х распределена по нормальному закону, то дифференциальная функция

,

где а =М(Х) и σ=
. В этом случае получаем из (1)

. (2)

Формулу (2) можно преобразовать, используя функцию Лапласа.

Сделаем подстановку. Пусть
. Тогда
илиdx =σ∙ dt .

Следовательно
, гдеt 1 иt 2 соответствующие пределы для переменнойt.

Сократив на σ, будем иметь

Из введенной подстановки
следует, что
и
.

Таким образом,

(3)

По условию задачи имеем: а=5; σ=
=0,8; α=4; β=7. Подставив эти данные в (3), получим:

=Ф(2,5)-Ф(-1,25)=

=Ф(2,5)+Ф(1,25)=0,4938+0,3944=0,8882.

Пример. Считается, что отклонение длины изготавливаемых деталей от стандарта является случайной величиной, распределенной по нормальному закону. Стандартная длина (математическое ожидание) а=40 см, среднее квадратическое отклонение σ=0,4 см. Найти вероятность того, что отклонение длины от стандартной составит по абсолютной величине не более 0,6 см.

Решение .Если Х – длина детали, то по условию задачи эта величина должна быть в интервале (а-δ,а+δ), где а=40 и δ=0,6.

Положив в формулу (3) α= а-δ и β= а+δ, получим

. (4)

Подставив в (4) имеющиеся данные, получим:

Следовательно, вероятность того, что изготавливаемые детали по длине будут в пределах от 39,4 до 40,6 см, составляет 0,8664.

Пример. Диаметр деталей, изготавливаемых заводом, является случайной величиной, распределенной по нормальному закону. Стандартная длина диаметраа=2,5 см, среднее квадратическое отклонение σ=0,01. В каких границах можно практически гарантировать длину диаметра этой детали, если за достоверное принимается событие, вероятность которого равна 0,9973?

Решение. По условию задачи имеем:

а=2,5; σ=0,01; .

Применяя формулу (4), получаем равенство:

или
.

По таблице 2 находим, что такое значение функция Лапласа имеет при х=3. Следовательно,
; откуда σ=0,03.

Таким образом, можно гарантировать, что длина диаметра будет изменяться в пределах от 2,47 до 2,53 см.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Курсовая работа

По курсу «Подземная гидромеханика»

Тема: «Вывод уравнения Лапласа. Плоские задачи теории фильтрации»


Введение

1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа.

2.1 Приток к совершенной скважине

2.1.1 Фильтрационный поток от нагнетательной скважины к эксплуатационной

2.1.2 Приток к группе скважин с удаленным контуром питания

2.1.3 Приток к скважине в пласте с прямолинейным контуром питания

2.1.4 Приток к скважине, расположенной вблизи непроницаемой прямолинейной границы

2.1.5 Приток к скважине в пласте с произвольным контуром питания

2.1.6 Приток к бесконечным цепочкам и кольцевым батареям скважин

2.1.6.1 Приток к скважинам кольцевой батареи

2.1.6.2 Приток к прямолинейной батареи скважин

2.1.7 Метод эквивалентных фильтрационных сопротивлений

Литература


Введение

Подземная гидромеханика - наука о движении жидкостей, газов и их смесей в пористых и трещиноватых горных породах - теоретическая основа разработки нефтяных и газовых месторождений, одна из профилирующих дисциплин в учебном плане промыслового и геологического факультетов нефтяных вузов.

В основе подземной гидравлики лежит представление о том, что нефть, газ и вода, заключенные в пористой среде, составляют единую гидравлическую систему.

Теоретической основой ПГД является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.

Особенностью теории фильтрации нефти и газа в природных пластах является одновременное рассмотрение процессов в областях, характерные размеры которых различаются на порядки: размер пор (до десятков микрометров), диаметр скважин (до десятков сантиметров), толщины пластов (до десятков метров), расстояния между скважинами (сотни метров), протяженность месторождений (до сотен километров).

В данной курсовой работе выводится основное уравнение Лапласа и рассматриваются плоские задачи теории фильтрации, а так же их решение.


1. Дифференциальные уравнения движения сжимаемой и несжимаемой жидкости в пористой среде. Вывод уравнения Лапласа

При выводе дифференциального уравнения движения сжимаемой жидкости исходными уравнениями являются следующие:

закон фильтрации жидкости; в качестве закона фильтрации принимаем линейный закон фильтрации, выражающийся формулами (3.1)

, (3.1)

уравнение неразрывности (3.2)

, (3.2)

уравнение состояния. Для капельной сжимаемой жидкости уравнение состояния может быть представлено в виде (3.3)

, (3.3) - плотность жидкости при атмосферном давлении .

Подставляя в уравнение неразрывности (3.2) вместо проекций скорости фильтрации vx, vy и vz их значения из линейного закона, выражающегося формулой (3.1), получим:

, (3.4)

уравнения состояния (3.3) имеем:

, (3.5) , , . (3.6)

Подставляя эти значения частных производных

, и в уравнение (3.4), получим:

Вводя оператор Лапласа


уравнение (3.7) более кратко можно написать в виде

, (3.8)

Учитывая, что

, (3.9)

уравнение (3.7) можно приближенно представить в виде:

,(3.10)

Уравнение (3.7) или приближенное заменяющее его уравнение (3.10) есть искомое дифференциальное уравнение неустановившегося движения сжимаемой жидкости в пористой среде. Упомянутые уравнения имеют вид «уравнения теплопроводности», интегрирование которого при различных начальных и граничных условиях рассматривается в каждом курсе математической физики.

Решение различных задач о неустановившемся движении однородной сжимаемой жидкости в пористой среде, основанное на интегрировании уравнения (3.7) при различных начальных и граничных условиях, дается в книгах В. Н. Щелкачева, И. А. Чарного и М.Маскета. При установившемся движении сжимаемой жидкости

и вместо уравнения (3.7) имеем: , (3.11)

Уравнение (3.11) называется уравнением Лапласа.

При установившейся и неустановившейся фильтрации несжимаемой жидкости плотность жидкости постоянна следовательно, величина, стоящая в правой части уравнения (3.4), равна нулю. Сокращая левую часть этого уравнения на постоянную

и выполнив дифференцирование, получим: , (3.12)

Таким образом, установившаяся и неустановившаяся фильтрация несжимаемой жидкости описывается уравнением Лапласа (3.12).


2. Плоские задачи теории фильтрации

При разработке нефтяных и газовых месторождений (НГМ) возникает два вида задач:

1. Задаётся дебит скважин и требуется определить необходимое для этого дебита забойное давление и, кроме того, давление в любой точке пласта. В данном случае величина дебита определяется значением предельной для имеющихся коллекторов депрессией, при которой ещё не наступает их разрушение, или прочностными характеристиками скважинного оборудования, или физическим смыслом. Последнее означает, например, невозможность установления нулевого или отрицательного забойного давления.

2. Задаётся забойное давление и требуется определить дебит. Последний вид условия встречается наиболее часто в практике разработки НГМ. Величина забойного давления определяется условиями эксплуатации. Например, давление должно быть больше давления насыщения для предотвращения дегазации нефти в пласте или выпадения конденсата при разработке газоконденсатных месторождений, что снижает продуктивные свойства скважин. Наконец, если возможен вынос песка из пласта на забой скважины, то скорость фильтрации на стенке скважины должна быть меньше некоторой предельной величины.

Замечено, что при эксплуатации группы скважин в одинаковых условиях, т.е. с одинаковым забойным давлением, дебит всего месторождения растёт медленнее увеличения числа новых скважин с теми же забойными условиями (рис.4.1). Увеличение дебита при этом требует понижения забойного давления.

Для решения поставленных задач решим задачу плоской интерференции (наложения) скважин. Предположим, что пласт - неограниченный, горизонтальный, имеет постоянную мощность и непроницаемые подошву и кровлю. Пласт вскрыт множеством совершенных скважин и заполнен однородной жидкостью или газом. Движение жидкости - установившееся, подчиняется закону Дарси и является плоским. Плоское движение означает, что течение происходит в плоскостях, параллельных между собой и картина движения во всех плоскостях идентична. В связи с этим разбирается течение в одной из этих плоскостей - в основной плоскости течения.

Решение задач будем строить на принципе суперпозиции (наложения) потоков. Основанный на этом принципе метод суперпозиции заключается в следующем.

При совместном действии в пласте нескольких стоков (эксплуатационных скважин) или источников (нагнетательных скважин) потенциальная функция, определяемая каждым стоком (источником), вычисляется по формуле для единственного стока (источника). Потенциальная функция, обусловленная всеми стоками (источниками), вычисляется путём алгебраического сложения этих независимых друг от друга значений потенциальной функции. Суммарная скорость фильтрации определяется как векторная сумма скоростей фильтрации, вызванная работой каждой скважины (рис.4.2b).

Пусть в неограниченном пласте действует n стоков с положительным массовым дебитом G и источников с отрицательным дебитом (рис. 4.2a).. Поток в окрестности каждой скважины в этом случае плоскорадиален и потенциал

,(4.1)

Свойства жидкого состояния. Поверхностный слой. Поверхностное натяжение. Смачивание. Формула Лапласа. Капиллярные явления.

Жидкостями называются вещества, находящиеся в конденсированном состоянии, которое является промежуточным между твердым кристаллическим состоянием и газообразным состоянием.

Область существования жидкостей ограничена со стороны высоких температур переходом ее в газообразное состояние, со стороны низких температур – переходом в твердое состояние.

В жидкостях расстояние между молекулами значительно меньше, чем в газах (плотность жидкостей в ~ 6000 раз больше плотности насыщенного пара вдали от критической температуры) (рис.1).

Рис.1. Водяной пар (1) и вода (2). Молекулы воды увеличены примерно в 5·10 7 раз

Следовательно, силы межмолекулярного взаимодействия в жидкостях, в отличие от газов, являются основным фактором, который определяет свойства жидкостей. Поэтому жидкости, как и твердые тела, сохраняют свой объем и имеют свободную поверхность. Подобно твердым телам жидкости характеризуются очень малой сжимаемостью и сопротивляются растяжению.

Однако силы связей между молекулами жидкости не настолько велики, чтобы препятствовать скольжению слоев жидкости относительно друг друга. Поэтому жидкости, как и газы, обладают текучестью. В поле силы тяжести жидкости принимают форму сосуда, в который они налиты.

Свойства веществ определяются движением и взаимодействием частиц, из которых они состоят.

В газах в столкновениях участвуют в основном две молекулы. Следовательно, теория газов сводится к решению задачи двух тел, которая может быть решена точно. В твердых телах молекулы совершают колебательное движение в узлах кристаллической решетки в периодическом поле, созданном другими молекулами. Такая задача поведения частиц в периодическом поле так же решается точно.

В жидкостях каждую молекулу окружают несколько других. Задача подобного типа (задача многих тел) в общем, виде, независимо от природы молекул, характера их расположения до сих пор точно не решена.

Опыты по дифракции рентгеновских лучей, нейтронов, электронов помогли определить строение жидкостей. В отличие от кристаллов, в которых наблюдается дальний порядок (регулярность размещения частиц в больших объемах), в жидкостях на расстояниях порядка 3 – 4 молекулярных диаметров порядок в размещении молекул нарушается. Следовательно, в жидкостях наблюдается так называемый ближний порядок в размещении молекул (рис.2):

Рис.2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 – вода; 2 – лед

В жидкостях молекулы совершают малые колебания в пределах ограниченных межмолекулярными расстояниями. Однако время от времени в результате флуктуаций молекула может получить от соседних молекул энергию, которой хватит, чтобы скачком переместиться в новое положение равновесия. В новом положении равновесия молекула будет находиться некоторое время, пока снова, в результате флуктуаций не получит энергию необходимую для скачка. Скачок молекулы происходит на расстояние сравнимое с размерами молекулы. Колебания, которые сменяются скачками, представляют собой тепловое движение молекул жидкости.

Среднее время, которое молекула находится в состоянии равновесия, называется временем релаксации . При повышении температуры увеличивается энергия молекул, следовательно, увеличивается вероятность флуктуаций, время релаксации при этом уменьшается:

(1)

где τ – время релаксации, B – коэффициент, имеющий смысл периода колебаний молекулы, W энергия активации молекулы, т.е. энергия необходимая для совершения скачка молекулы .

Внутреннее трение в жидкостях, как и в газах, возникает при движении слоев жидкости из-за переноса импульса в направлении нормали к направлению движения слоев жидкости. Перенос импульса от слоя к слою происходит и при скачках молекул. Однако, в основном, импульс переносится из-за взаимодействия (притяжения) молекул соседних слоев.

В соответствии с механизмом теплового движения молекул жидкости, зависимость коэффициента вязкости от температуры имеет вид:

(2)

где A – коэффициент, зависящий от дальности скачка молекулы, частоты ее колебаний и температуры, W энергия активации .

Уравнение (2) – формула Френкеля-Андраде . Температурная зависимость коэффициента вязкости в основном определяется экспоненциальным множителем.

Величина обратная вязкости называется текучестью . При понижении температуры вязкость некоторых жидкостей увеличивается настолько, что они практически перестают течь, образуя аморфные тела (стекло, пластмассы, смолы и т.д.).

Каждая молекула жидкости взаимодействует с соседними молекулами, которые находятся в зоне действия ее молекулярных сил. Результаты этого взаимодействия неодинаковые для молекул внутри жидкости и на поверхности жидкости. Молекула, находящаяся внутри жидкости взаимодействует с соседними молекулами окружающими ее и, равнодействующая сила, которая на нее действует, равна нулю (рис.3).

Рис.3. Силы, действующие на молекулы жидкости

Молекулы поверхностного слоя находятся при других условиях. Плотность пара над жидкостью значительно меньше плотности жидкости. Поэтому на каждую молекулу поверхностного слоя действует равнодействующая сила, направленная по нормали внутрь жидкости (рис.3). Поверхностный слой оказывает давление на остальную жидкость подобно упругой пленке. Молекулы, лежащие в этом слое также притягиваются друг к другу (рис.4).

Рис.4. Взаимодействие молекул поверхностного слоя

Это взаимодействие создает силы направленные по касательной к поверхности жидкости и стремящиеся сократить поверхность жидкости.

Если на поверхности жидкости провести произвольную линию, то по нормали к линии и по касательной к поверхности будут действовать силы поверхностного натяжения. Величина этих сил пропорциональна числу молекул, находящихся вдоль этой линии, следовательно, пропорциональна длине линии:

(3)

где σ – коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения :

(4)

Коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность жидкости .

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия примесей. Вещества, которые уменьшают поверхностное натяжение, называются поверхностно - активными (спирт, мыло, стиральный порошок и т.д.).

Чтобы увеличить площадь поверхности жидкости, необходимо выполнить работу против сил поверхностного натяжения. Определим величину этой работы. Пусть имеется рамка с жидкой пленкой (например, мыльной) и подвижной перекладиной (рис.5).

Рис.5. Подвижная сторона проволочной рамки находится в равновесии под действием внешней силы F вн и результирующей сил поверхностного натяжения F н

Растянем пленку силой F вн на dx . Очевидно:

где F н = σL –сила поверхностного натяжения. Тогда:

где dS = Ldx – приращение площади поверхности пленки. Из последнего уравнения:

(5)

Согласно (5) коэффициент поверхностного натяжения численно равен работе необходимой для увеличения площади поверхности на единицу при постоянной температуре. Из (5) видно, что σ может измеряться в Дж/м 2 .

Если жидкость граничит с другой жидкостью или с твердым телом, то из-за того, что плотности соприкасающихся веществ сравнимые, нельзя не обращать внимания на взаимодействие молекул жидкости с молекулами граничащих с ней веществ.

Если при контакте жидкости и твердого тела взаимодействие между их молекулами более сильное, чем взаимодействие между молекулами самой жидкости, то жидкость стремится увеличить поверхность соприкосновения и растекается по поверхности твердого тела. В этом случае жидкость смачивает твердое тело . Если взаимодействие между молекулами жидкости сильнее, чем взаимодействие между молекулами жидкости и твердого тела, то жидкость сокращает поверхность соприкосновения. В этом случае жидкость не смачивает твердое тело . Например: вода смачивает стекло, но не смачивает парафин, ртуть смачивает поверхности металлов, но не смачивает стекло.

Рис.6. Различные формы капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей

Рассмотрим каплю жидкости на поверхности твердого тела (рис.7):

Рис.7. Схемы к расчету равновесия капли на поверхности твердого тела для случаев несмачивающей (а) и смачивающей (б) жидкостей: 1 - газ, 2 - жидкость, 3 - твердое тело

Форма капли определяется взаимодействием трех сред: газа – 1, жидкости – 2 и твердого тела – 3. У всех этих сред есть общая граница – окружность, ограничивающая каплю. На элемент длины dl этого контура, будут действовать силы поверхностного натяжения: F 12 = σ 12 dl – между газом и жидкостью, F 13 = σ 13 dl - между газом и твердым телом, F 23 = σ 23 dl – между жидкостью и твердым телом. Если dl =1м, то F 12 = σ 12 , F 13 = σ 13 , F 23 = σ 23 . Рассмотрим случай когда:

Это значит, что <θ = π (рис.7,а). Окружность, которая ограничивает место соприкосновения жидкости с твердым телом, будет стягиваться в точку и капля принимает эллипсоидальную или сферическую форму. Это случай полного несмачивания. Полное несмачивание наблюдается также и в случае: σ 23 > σ 12 + σ 13 .

Другой граничный случай будет наблюдаться если:

Это значит, что <θ = 0 (рис.7,б), наблюдается полное смачивание. Полное смачивание будет наблюдаться и в случае когда: σ 13 > σ 12 + σ 23 . В этом случае равновесия не будет, ни при каких значениях угла θ , и жидкость будет растекаться по поверхности твердого тела вплоть до мономолекулярного слоя.

Если капля находится в равновесии, то равнодействующая всех сил, действующих на элемент длины контура равна нулю. Условие равновесия в этом случае:

Угол между касательными к поверхности твердого тела и к поверхности жидкости, который отсчитывается внутри жидкости , называется краевым углом .

Его значение определяется из (6):

(7)

Если σ 13 > σ 23 , то cosθ > 0, угол θ острый – имеет место частичное смачивание, если σ 13 < σ 23 , то cosθ < 0 – угол θ тупой – имеет место частичное несмачивание. Таким образом, краевой угол является величиной, характеризующей степень смачивания или несмачивания жидкости

Кривизна поверхности жидкости приводит к возникновению добавочного давления, действующего на жидкость под этой поверхностью. Определим величину добавочного давления под искривленной поверхностью жидкости. Выделим на произвольной поверхности жидкости элемент площадью ∆S (рис.8):

Рис.8. К расчету величины добавочного давления

O O – нормаль к поверхности в точке O . Определим силы поверхностного натяжения действующие на элементы контура AB и CD . Силы поверхностного натяжения F и F ′, которые действуют на AB и CD , перпендикулярны AB и CD и направлены по касательной к поверхности ∆S . Определим величину силы F :

Разложим силу F на две составляющих f 1 и f ′. Сила f 1 параллельна O O и направлена внутрь жидкости. Эта сила увеличивает давление на внутренние области жидкости (вторая составляющая растягивает поверхность и на величину давления не влияет).

Проведем плоскость перпендикулярную ∆S через точки M , O и N . Тогда R 1 – радиус кривизны поверхности в направлении этой плоскости. Проведем плоскость перпендикулярную ∆S и первой плоскости. Тогда R 2 – радиус кривизны поверхности в направлении этой плоскости. В общем случае R 1 ≠ R 2 . Определим составляющую f 1 . Из рисунка видно:

Учтем, что:

(8)

Силу F ′ разложим на такие же две составляющих и аналогично определим составляющую f 2 (на рисунке не показана):

(9)

Рассуждая аналогично, определим составляющие сил действующих на элементы AC и BD , учитывая, что вместо R 1 будет R 2:

(10)

Найдем сумму всех четырех сил, действующих на контур ABDC и оказывающих добавочное давление на внутренние области жидкости:

Определим величину добавочного давления:

Следовательно:

(11)

Уравнение (11) называется формулой Лапласа . Добавочное давление, которое оказывает искривленная поверхность жидкости на внутренние области жидкости, называется лапласовским давлением .

Лапласовское давление очевидно направлено к центру кривизны поверхности. Поэтому в случае выпуклой поверхности оно направлено внутрь жидкости и добавляется к нормальному давлению жидкости. В случае вогнутой поверхности жидкость будет находиться под меньшим давлением, чем жидкость под плоской поверхностью, т.к. лапласовское давление направлено за пределы жидкости.

Если поверхность сферическая, то: R 1 = R 2 = R :

Если поверхность цилиндрическая, то: R 1 = R , R 2 = ∞:

Если поверхность плоская то: R 1 = ∞, R 2 = ∞:

Если поверхностей две, например, мыльный пузырь, то лапласовское давление удваивается.

С явлениями смачивания и несмачивания связаны так называемые капиллярные явления . Если в жидкость опустить капилляр (трубка малого диаметра), то поверхность жидкости в капилляре принимает вогнутую форму, близкую к сферической в случае смачивания и выпуклую в случае несмачивания. Такие поверхности называются менисками .

Капиллярами называются такие трубки, в которых радиус мениска примерно равен радиусу трубки.

Рис. 9. Капилляр в смачивающей (а) и не смачивающей (б) жидкостях

Рис.10. Подъем жидкости в капилляре в случае смачивания

В случае вогнутого мениска добавочное давление направленно к центру кривизны вне жидкости. Поэтому давление под мениском меньше давления под плоской поверхностью жидкости в сосуде на величину лапласовского давления:

R – радиус мениска, r – радиус капиллярной трубки.

Следовательно, лапласовское давление вызовет подъем жидкости в капилляре на такую высоту h (рис.9), пока гидростатическое давление столба жидкости не уравновесит лапласовское давление:

Из последнего уравнения:

(12)

Уравнение (12) называется формулой Жюрена . Если жидкость несмачивает стенки капилляра, мениск выпуклый, cosθ < 0, то жидкость в этом случае опускается ниже уровня жидкости в сосуде на такую же глубину h согласно формуле (12) (рис.9).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ДИЗАЙНА И ТЕХНОЛОГИИ

КАФЕДРА ФИЗИКИ

С.М. РАЗИНОВА, В.Г. СИДОРОВ

Молекулярная физика определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах

Методические указания к лабораторной работе № 23

Утверждено в качестве методического пособия

Редакционно-издательским советом МГУДТ

Куратор РИС Козлов А.С.

Работа рассмотрена на заседании кафедры физики и рекомендована к печати.

Сидоров В.Г., доц. к.т.н.

Рецензент: доц. Родэ С.В., к.ф.-м.н.

Р-23 Разинова С.М. Молекулярная физика. Определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах .: методические указания к лабораторной работе № 23/ Разинова С.М., Сидоров В.Г. - М.: ИИЦ МГУДТ, 2004 – 11 стр.

Методические указания к выполнению лабораторной работы № 23 по теме «Молекулярная физика.Определение коэффициента поверхностного натяжения жидкости методом поднятия жидкости в капиллярах» содержит теоретический раздел, посвященный проявлениям сил поверхностного натяжения, механизму возникновения добавочного давления и расчет его величины, явлениям на границе жидкости и твердого тела, а также описание установки и принципа измерений, порядка выполнения работы, контрольные вопросы для допуска и защиты лабораторной работы.

Предназначен для студентов специальностей: 06.08, 17.07, 21.02, 22.03, 25.06, 25.08, 25.09, 28.10, 28.11, 28.12, 33.02.

© Московский государственный университет

дизайна и технологии, 2004

Лабораторня работа № 23.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ МЕТОДОМ ПОДНЯТИЯ ЖИДКОСТИ В КАПИЛЛЯРАХ”.

ЦЕЛЬ РАБОТЫ: ознакомление с теоретическими основами явления поверхностного натяжения и определение коэффициента поверхностного натяжения.

ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ: измерительный микроскоп, сосуд с водой, два капилляра, штатив с держателем.

Введение

1. Давление под изогнутой поверхностью воды. Формула Лапласа.

Одним из проявлений сил поверхностного натяжения является возникновение добавочного давления под искривленной поверхностью жидкости.

Рассмотрим механизм возникновения этого давления и рассчитаем его величину.

Представим себе изогнутую сферическую поверхность с радиусом кривизны R и центром кривизны в т. О. Выделим на этой поверхности участок, ограниченный круговым контуром c радиусом r (рис. 1). На каждый отрезок контурабудет действовать сила поверхностного натяженияF  i , направленная по касательной к поверхности перпендикулярно отрезку контура .

Добавочное давление создается за счёт составляющей силы F  i , перпендикулярной поверхности сечения радиуса r площадью S= r 2 .

.

Силу F поверхностного натяжения можно выразить из определения коэффициента поверхностного натяжения, как F= = 2 r , тогда

.

Так как cos=r/R , то

Если в формуле (1) подставить вместо радиуса R значение кривизны поверхности H=1/R , то получим:

Лаплас доказал, что формула (2) для поверхности любой формы, если под Н понимать среднюю кривизну поверхности в той точке, под которой определяется дополнительное давление. В геометрии доказывается, что величина, равная

, (3)

остается постоянной для любой пары взаимно перпендикулярных нормальных сечений, проведенных через точку произвольной поверхности. Эту величину назвали средней кривизной поверхности в данной точке. Радиусы R 1 и R 2 могут иметь разные знаки в зависимости от того, где лежит центр кривизны: если центр кривизны лежит под поверхностью (рис.2, а), то радиус положителен, составляющие силы поверхностного натяжения направлены вниз и, следовательно, возникающая добавочная сила давления направлена также вниз; если центр кривизны лежит над поверхностью (рис.2, б), то радиус отрицателен, составляющиесилы поверхностного натяжения будут направлены вверх, они и создают силу давления, направленную вверх. В случае плоской поверхности (рис.2,в) добавочное давление отсутствует (у касательной к поверхности силы натяжения нет перпендикулярной к ней составляющей).

Если в формулу (2) подставить (3), то получим:

(4)

Эта формула носит название ФОРМУЛЫ ЛАПЛАСА , она дает возможность рассчитать добавочное давление, возникающее под произвольно изогнутой поверхностью жидкости.

2.Явления на границе жидкости и твердого тела . При соприкосновении жидкости и твердого тела с твердым телом необходимо учитывать как силы взаимодействия между молекулами жидкости, так и силы взаимодействия между молекулами жидкости и твердого тела. Если силы сцепления жидкости и твердого тела больше сил сцепления частиц жидкости, жидкость называется СМАЧИВАЮЩЕЙ данное твердое тело, если наоборот, то жидкость будет НЕСМАЧИВАЮЩЕЙ это тело. Одно и то же тело может смачиваться одной жидкостью и не смачиваться другой. Например, стекло смачивается водой и не смачивается ртутью.

Посмотрим, как ведет себя смачивающая жидкость около стенок сосуда (рис. 3, а). Рассмотрим сферу молекулярного действия ближайшей к стенке молекулы поверхности жидкости. На эту молекулу будут действовать силы F 1 - со стороны молекул твердого тела и F 2 - со стороны молекул жидкости. Так как для смачивающей жидкости F 1 F 2 , то равнодействующая F будет направлена вглубь жидкости, перпендикулярно ее поверхности, поэтому поверхность жидкости вблизи стенки не горизонтальна, а изгибается вверх. В случае несмачивающей жидкости, по аналогии, поверхность жидкости вблизи стенок изгибается вверх (рис.3, б). Итак, поверхность свободной жидкости вблизи стенок искривляется.

Степень смачиваемости жидкостей характеризуется КРАЕВЫМ УГЛОМ, равным углу между касательными к поверхности жидкости и поверхности твердого тела. В случае смачивания этот угол (рис.3, а) , если, то говорят о полном смачивании жидкостью твердого тела. В случае не смачивания краевой уголтупой:(рис.3, б), если, то говорят о полном несмачивании.

Рисунок 4,а показывает вид капли смачивающей жидкости на горизонтальной поверхности, рисунок 4,б - вид капли жидкости, не смачивающей поверхности.

3. Капиллярность. Если в жидкость погрузить широкую трубу, то в соответствии с рис. 3 поверхность жидкости у стенок искривится. Такого рода изогнутые поверхности носят название менисков.

Если же трубка будет достаточно узкой, то поверхность мениска примет сферическую форму, или ближайшую к ней, при этом радиус кривизны поверхности жидкости будет того же порядка, что и радиус трубки. Образующееся искривление поверхности жидкости вызовет появление добавочного давления, величина которого определяется в самом общем случае формулой (4) Лапласа. Возникшее дополнительное давление в случае смачивания приведет к подъему жидкости в узкой трубке на некоторую высоту (Рис.5, а), а в случае не смачивания - к ее опусканию (Рис.5, б).

Рассмотрим это явление подробно.

Если, например, жидкость в трубке смачивающая, то добавочное давление жидкости под поверхностью мениска будет направлено вверх (рис.2, б), а величина его в соответствии с (1) будет равна

где  - коэффициент поверхностного натяжения, R - радиус кривизны поверхности жидкости (как указывалось выше, поверхность жидкости в узкой трубке можно считать частью сферы радиуса R).

Так как в сосуде, в который опущена трубка, под плоской поверхностью добавочное давление равно нулю, то в трубке жидкость поднимается на такую высоту, при которой гидростатическое давление столба жидкости уравновесит лапласовское добавочное давление р. Гидростатическое давление, создаваемое столбом жидкости высотой h, равно gh, где  - плотность жидкости, g - ускорение свободного падения, тогда условие равновесия примет вид:

Из рисунка (5) видно, что , где - краевой угол смачивания, тогда из формулы (5) можно найти связь между высотой h подъема жидкости по узкой трубки и радиусом трубки r.

Из (6) видно, что высота поднятия в узкой трубке тем больше, чем меньше ее радиус, поэтому поднятие жидкостей особенно заметно в узких трубках. Такие трубки носят название КАПИЛЛЯРОВ , а само явление поднятия или опускания в них жидкостей - КАПИЛЛЯРНОСТЬЮ.

Основываясь на изложенной теории можно экспериментально определить коэффициент поверхностного натяжения жидкости.

давление непосредственно под выпуклой поверхностью жидкости больше давления под плоской поверхностью жидкости, а давление под вогнутой поверхностью жидкости меньше давления, чем под плоской поверхностью.

Расчет давления под сферической поверхностью жидкости

Она представляет из себя тонкий слой воды, который имеет две ограничивающие поверхности: внутреннюю и внешнюю. Радиусы кривизны этих поверхностей можно считать одинаковыми, так как толщина пленки в тысячи раз меньше радиуса пузыря. Вода из этого слоя постепенно стекает, слой утончается и, наконец, рвется. Так что пузыри по воде плавают не очень долго: от долей секунды до десятка секунд. Надо отметить, что по мере утончения водяной пленки размер пузыря практически не меняется.

Рассчитаем избыточное давление в таком пузыре. Для простоты рассмотрим однослойную полусферу радиуса r, располагающуюся на горизонтальной поверхности, будем так же считать, что снаружи воздуха нет. Пленка удерживается на заштрихованной поверхности за счет смачивания (рис. 2.3). При этом на нее вдоль границы контакта с поверхностью действует сила поверхностного натяжения, равная

где - коэффициент поверхностного натяжения жидкости,

Длина границы раздела пленка-поверхность равная .

Т. е. имеем:

.

Эта сила, действующая на пленку, а через нее и на воздух, направлена перпендикулярно поверхности (см. рис 2.3). Так что давление воздуха на поверхность и, следовательно, внутри пузыря можно рассчитать так:

Где F - сила поверхностного натяжения, равная ,

S - площадь поверхности: .

Подставляя значение силы F и площади S в формулу расчета давления получим:

и окончательно .

В нашем примере с воздушным пузырем на поверхности воды пленка двойная и, следовательно, избыточное давление равно .

На рисунке 2.4 приведены примеры однослойных сферических поверхностей, которые могут образоваться на поверхности жидкости. Над жидкостью находится газ, имеющий давление .

Капилля́рность (от лат. capillaris - волосяной), капиллярный эффект - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке.

На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем). Капиллярность почвы определяется скоростью, с которой вода поднимается в почве и зависит от размера промежутков между почвенными частицами.



Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь R 1,2 - радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак - если по разную cторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса R имеем



Вверх