Виды математических моделей

ВВЕДЕНИЕ

Объекты материального мира сложны и многообразны. Отражение всех их свойств в создаваемых, изучаемых и используемых образах весьма затруднительно, да и не нужно. Важно, чтобы образ объекта содержал черты, наиболее важные для его использования Методом моделирования называется замена объекта оригинала объектом-заместителем, обладающим определенным сходством с оригиналом, с целью получения новой информации об оригинале. Моделью называется объект-заместитель объекта-оригинала, предназначенный для получения информации об оригинале.

Математические модели относятся к символьным моделям и представляют собой описание объектов в виде математических символов, формул, выражений. При наличии достаточно точной математической модели можно путем математических расчетов прогнозировать результаты функционирования объекта при различных условиях, выбрать из множества возможных вариантов тот, который дает наилучшие результаты.



В данной работе приведены виды классификации математических методов моделирования и описаны некоторые методы:

Линейное программирование - это методы математического моделирования, которые служат для поиска оптимального варианта распределения ограниченных ресурсов между конкурирующими работами.

Имитационное моделирование. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора исследуемой предметной области для проведения различных экспериментов.


Классификация методов математического моделирования

Ввиду разнообразия применяемых математических моделей, их общая классификация затруднена. В литературе обычно приводят классификации, в основу которых положены различные подходы и принципы.

По принадлежности к иерархическому уровню математические модели делятся на модели микроуровня, макроуровня, метауровня. Математические модели на микроуровне процесса отражают физические процессы, протекающие, например, при резании металлов. Они описывают процессы на уровне перехода (прохода).

Математические модели на макроуровне процесса описывают технологические процессы.

Математические модели на метауровне процесса описывают технологические системы (участки, цехи, предприятие в целом).

По характеру отображаемых свойств объекта модели можно классифицировать на структурные и функциональные

Модель структурная, – если она представима структурой данных или структурами данных и отношениями между ними В свою очередь, структурная модель может быть иерархической или сетевой.

Модель иерархическая (древовидная), – если представима некоторой иерархической структурой (деревом); например, для решения задачи нахождения маршрута в дереве поиска можно построить древовидную модель, приведенную на рисунке 1.

Рисунок 1 - Модель иерархической структуры.


Модель сетевая, – если она представима некоторой сетевой структурой. Например, строительство нового дома включает различные операции которые можно представить в виде сетевой модели, приведенной на рисунке 2.

Рисунок 2 - Модель сетевой структуры.

Модель функциональная, – если она представима в виде системы функциональных соотношений. Например, закон Ньютона и модель производства товаров –функциональные.

По способу представления свойств объекта модели делятся на аналитические, численные, алгоритмические и имитационные.

Аналитические математические модели представляют собой явные математические выражения выходных параметров как функций от параметров входных и внутренних и имеют единственные решения при любых начальных условиях. Например, процесс резания (точения) с точки зрения действующих сил представляет собой аналитическую модель. Также квадратное уравнение, имеющее одно или несколько решений, будет аналитической моделью. Модель будет численной, если она имеет решения при конкретных начальных условиях (дифференциальные, интегральные уравнения).

Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование и развитие. Введение данного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования) вполне обосновано, т. к. не все модели могут быть исследованы или реализованы алгоритмически. Например, моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа Х может служить алгоритм вычисления его приближенного, сколь угодно точного значения по известной рекуррентной формуле.

Модель имитационная, – если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели, например модель экономической системы производства товаров двух видов. Такую модель можно использовать в качестве имитационной с целью определения и варьирования общей стоимости в зависимости от тех или иных значений объемов производимых товаров.

По способу получения модели делятся на теоретические и эмпирические Теоретические математические модели создаются в результате исследования объектов (процессов) на теоретическом уровне. Например, существуют выражения для сил резания, полученные на основе обобщения физических законов. Но они неприемлемы для практического использования, т. к. очень громоздки и не совсем адаптированы к реальным процессам. Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

По форме представления свойств объекта модели делятся на логические, теоретико-множественные и графовые. Модель логическая, если она представима предикатами, логическими функциями, например, совокупность двух логических функций может служить математической моделью одноразрядного сумматора. Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности к ним и между ними. Модель графовая, – если она представима графом или графами и отношениями между ними.

По степени устойчивости . модели могут быть разделены на устойчивые и неустойчивые. Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой

По отношению к внешним факторам модели могут быть разделены на открытые и замкнутые. Замкнутой моделью является модель,которая функционирует вне связи с внешними (экзогенными) переменными. В замкнутой модели изменения значений переменных во времени определяются внутренним взаимодействием самих переменных. Замкнутая модель может выявить поведение системы без ввода внешней переменной. Пример: информационные системы с обратной связью являются замкнутыми системами. Это самонастраивающиеся системы, и их характеристики вытекают из внутренней структуры и взаимодействий, которые отражают ввод внешней информации. Модель, связанная с внешними (экзогенными) переменными, называется открытой.

По отношению к временному фактору модели делятся на динамические и статические Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Динамической моделью называется модель, если среди ее параметров есть временной параметр, т. е. она отображает систему (процессы в системе) во времени. одновременно.


Линейное программирование

Среди задач математического программирования самыми простыми (и лучше всего изученными) являются так называемые задачи линейного программирования. Характерно для них то, что:

а) показатель эффективности (целевая функция) W линейно зависит от элементов решения х 1 , х 2 , ....., х п и

б) ограничения, налагаемые на элементы решения, имеют вид линейных равенств или неравенств относительно х 1 , х 2 , ..., х п

Такие задачи довольно часто встречаются на практике, например, при решении проблем, связанных с распределением ресурсов, планированием производства, организацией работы транспорта и т. д. Это и естественно, так как во многих задачах практики «расходы» и «доходы» линейно зависят от количества закупленных или утилизированных средств (например, суммарная стоимость партии товаров линейно зависит от количества закупленных единиц; оплата перевозок производится пропорционально весам перевозимых грузов и т. д.).

Любую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛИ), которая формулируется так: найти неотрицательные значения переменных х 1 ,х 2 , ..., х п, которые удовлетворяли бы условиям-равенствам (1).


Случай, когда f надо обратить не в максимум, а в. минимум, легко сводится к предыдущему, если попросту изменить знак f на обратный (максимизировать не f, а f" = - f). Кроме того, от любых условий-неравенств можно перейти к условиям-равенствам ценой введения новых дополнительных переменных.

В зависимости от вида целевой функции и ограничений можно выделить несколько типов задач линейного программирования или линейных моделей: общая линейная задача, транспортная задача, задача о назначениях.

Транспортная задача (задача Монжа - Канторовича) - математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение. Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки.

Задача о назначениях формулируется следующим образом:

Имеется некоторое число работ и некоторое число исполнителей. Любой исполнитель может быть назначен на выполнение любой (но только одной) работы, но с неодинаковыми затратами. Нужно распределить работы так, чтобы выполнить работы с минимальными затратами. Если число работ и исполнителей совпадает, то задача называется линейной задачей о назначениях.

Существует несколько способов решения задачи линейного программирования, в частности графический метод и симплекс-метод. Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется для решения задач двумерного пространства. Задачи трёхмерного пространства решаются очень редко, т.к. построение их решения неудобно и лишено наглядности. Рассмотрим метод на примере двумерной задачи.

Найти решение Х = (х 1 ,х 2), удовлетворяющее системе неравенств (3)

(3)
6x 1 +7x 2 ≤42

при котором значение целевой функции F = 2x 1 x 2 достигает максимума.

Построим на плоскости в декартовой прямоугольной системе координат х 1 Ох 2 область допустимых решений задачи.

Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой нет. Чтобы определить искомую полуплоскость нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей и проверить: удовлетворяют ли её координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка. В противном случае другая полуплоскость.

Найдём полуплоскость, определяемую неравенством x 1 -x 2 ≥-3. Для этого, построив прямую (I) x 1 -x 2 =-3, возьмём какую-нибудь точку, принадлежащую одной из двух полученных полуплоскостей, например, точку O(0,0). Координаты этой точки удовлетворяют неравенству x 1 -x 2 ≥-3. Значит полуплоскость, которой принадлежит точка O(0,0) определяется неравенством x 1 -x 2 ≥-3.

Теперь найдём полуплоскость, определяемую неравенством 6x1+7x 2 ≤42.

Строим прямую II 6x 1 +7x 2 =42. Координаты точки O(0,0) удовлетворяют неравенству6x 1 +7x 2 ≤42, а значит, искомой будет вторая полуплоскость.

Теперь ищем полуплоскость для неравенства 2 x 1 -3 x 2 ≤6. Координаты точки O(0,0) удовлетворяют неравенств 2 x 1 -3 x 2 ≤6. Следовательно, полуплоскость, которой принадлежит точка O(0,0) определяется неравенством 2 x 1 -3 x 2 ≤6 (Прямая III).

И полуплоскость для неравенства x 1 + x 2 ≥4. Координаты точки О(0,0) удовлетворяют неравенству x 1 + x 2 ≥4 (Прямая IV). Отсюда прямая x 1 + x 2 =4 определяется первой полуплоскостью.

Неравенства x 1 ≥0 и x 2 ≥0 означают, что область решения будет расположена справа от оси ординат и над осью абсцисс. Таким образом, заштрихованная на рисунке 3 область ABCD будет областью допустимых решений, определённой ограничениями задачи. Целевая функция принимает свое максимальное значение в одной из вершин фигуры ABCD. Для определения этой вершины, построим вектор С (2; -1) и прямую 2x 1 -x 2 =р, где pнекоторая постоянная такая, что прямая2x 1 -x 2 =p имеет общие точки с многоугольником решений. Положим, например, p=1/2 и построим прямую 2 x 1 -x 2 =1/2. Далее, будем передвигать построенную прямую в направлении вектора , до тех пор, пока она не пройдет через последнюю ее общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

На рисунке 3 видно, что последней общей точкой прямой 2x 1 -x 2 =p с многоугольником решений является точка A. Эта точка является местом пересечения прямой II и III, поэтому ее координаты находятся как решение системы уравнений, задающих эти прямые:

(4)
6x 1 +7x 2 =42

При этом значение целевой функции F = 2 x 1 -x 2 = 2* 5.25 – 1 *1.5 = 9.

Точка B будет оптимальным решением задачи Х опт = (х 1опт, х 2опт) и ее координаты будут равны х 1опт =5.25, х 2 опт =1.5.

Рисунок 3 - Область допустимых решений задачи

Симплекс - метод

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

1) Указать способ нахождения оптимального опорного решения.

2) Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения.

3) Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или сделать заключение об отсутствии оптимального решения.

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:

1) Привести задачу к каноническому виду.

2) Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решения ввиду несовместимости системы ограничений).

3) Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода.

4) Если выполняется признак единственности оптимального решения, то решение задачи заканчивается. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения.

Вычислительная эффективность математических методов оценивается обычно при помощи двух параметров:

1) Числа итераций, необходимого для получения решения;

2) Затрат машинного времени.

В результате численных экспериментов получены результаты для симплекс-метода:

1) Число итераций при решении задач линейного программирования в стандартной форме с ограничениями и переменными заключено между и . Среднее число итераций . Верхняя граница числа итераций равна .

2) Требуемое машинное время пропорционально .

Число ограничений больше влияет на вычислительную эффективность, чем число переменных, поэтому при формулировке задач линейного программирования нужно стремиться к уменьшению числа ограничений пусть даже путём роста числа переменных.


Основные понятия метода имитационного моделирования.

Под термином «имитационное моделирование» («имитационная модель») обычно подразумевают вычисление значений некоторых характеристик развивающегося во времени процесса путем воспроизведения течения этого процесса на компьютере с помощью его математической модели, причем получить требуемые результаты другими способами или невозможно, или крайне затруднительно. Воспроизведение течения процесса на компьютере с помощью математической модели принято называть имитационным экспериментом.

Имитационные модели относятся к классу моделей, которые являются системой соотношений между характеристиками описываемого процесса. Эти характеристики разделяют на внутренние («эндогенные», «фазовые переменные») и внешние («экзогенные», «параметры»). Приблизительно внутренние характеристики - это те, значения которых намереваются узнать с помощью средств математического моделирования; внешние - такие, от которых внутренние характеристики существенно зависят, но обратная зависимость (с практически приемлемой точностью) не имеет места.

Модель, способная давать прогноз значений внутренних характеристик, должна быть замкнутой («замкнутая модель»), в том смысле, что ее соотношения позволяют вычислять внутренние характеристики при известных внешних. Процедура определения внешних характеристик модели называется ее идентификацией, или калибровкой. Математические модели описанного класса (к ним относят имитационные модели) определяют отображение, позволяющее получить по известным значениям внешних характеристик значения внутренних. Далее это отображение будет называться отображением, ассоциированным с моделью.

В основе моделей рассматриваемого класса лежит постулат о независимости внешних характеристик от внутренних, а соотношения модели являются формой записи ассоциированного с ней отображения. Как показано на рисунке 4 в процессе имитационного моделирования исследователь имеет дело с четырьмя основными элементами:

Реальная система;

Логико-математическая модель моделируемого объекта;

Имитационная (машинная) модель;

ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико или логико-математических моделей, описываемых изучаемый процесс. Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени. Составной характер сложной системы описывает представление ее модели в виде трех множеств:A, S, T, где
А – множество элементов (в их число включается и внешняя среда);
S – множество допустимых связей между элементами (структура модели);
Т – множество рассматриваемых моментов времени.

Рисунок 4 Процесс имитационного моделирования

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

С сохранением их логической структуры;

С сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.

Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений. В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий).

Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события. Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем. Имитационная модель содержит элементы непрерывного и дискретного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест, исследование динамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование - эффективный аппарат исследования стохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследование в условиях неопределенности, при неполных и неточных данных. Имитационное моделирование является важным фактором в системах поддержки принятия решений, т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных.

Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если?”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует). В имитационной модели может быть обеспечен различный, в том числе и высокий уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно.


СПИСОК ЛИТЕРАТУРЫ

1. Блинов, Ю.Ф. Методы математического моделирования [Текст] : Электронное учебное пособие / Ю.Ф. Блинов, В.В. Иванцов, П.В. Серба. –Таганрог: ТТИ ЮФУ, 2012. –42 с.

2. Вентцель, Е.С. Исследование операций. Задачи, принципы, методология. [Текст] : Учебное пособие / Е.С. Вентцель - М. : КНОРУС, 2010. - 192 с.

3. Гетманчук, А. В. Экономико-математические методы и модели [Текст]: Учебное пособие для бакалавров. / А.В. Гетманчук - М. : Издательско-торговая корпорация «Дашков и Ко», 2013. -188 с.

4. Замятина, О.М. Моделирование систем. [Текст] : Учебное пособие. / О.М. Замятина – Томск: Изд-во ТПУ, 2009. – 204 с.

5. Павловский, Ю.Н. Имитационное моделирование. [Текст] : учебное пособие для студентов ВУЗов / Ю.Н.Павловский, Н.В.Белотелов, Ю.И.Бродский - М. : Издательский центр «Академия», 2008. – 236 с.

Для эффективного решения различных задач обработки И необходима их математическая постановка, которая прежде всего включает в себя математическое описание, т. е. модель И как объекта исследования. К настоящему времени разработан целый ряд таких моделей , некоторые из них рассматриваются в этой главе.

1.1. Случайные поля

Наиболее распространенными в настоящее время являются информационные комплексы, включающие в себя пространственные системы датчиков и цифровую вычислительную технику. Поэтому мы будем в основном рассматривать МИ с дискретными пространственными и временными переменными. Не ограничивая общности, будем считать, что МИ заданы на многомерных прямоугольных сетках с единичным шагом. На рис. 1.1,а и 1.1,б изображены двумерная и трехмерная сетки. В общем случае И задано в узлах n-мерной сетки .

В зависимости от физической природы значения И могут быть скалярными (например, яркость монохроматического изображения), векторными (поле скоростей, цветные изображения, поле смещений) и более сложнозначными (например, матричными). Если обозначить через значение И в узле (пикселе) , то И есть совокупность этих значений на сетке: .

Если данные представляют собой временную последовательность И, то иногда удобно считать эту последовательность одним И, увеличив размерность сетки на единицу. Например, последовательность из плоских И (рис. 1.1,а) можно рассматривать как одно трехмерное И (рис. 2.1,б).

Если требуется временную переменную выделить особо, то будем ее записывать сверху: . Это И задано на прямом произведении сеток и I, где I – множество значений временного индекса. Сечение , т.е. совокупность отсчетов И при фиксированном значении временного индекса i, называется i-м кадром И . Каждый кадр задан на сетке . Например, на рис. 1.1,б изображено три двухмерных кадра.

Таким образом, МИ можно рассматривать как некоторую функцию, определенную на многомерной сетке. Значение элементов И невозможно точно предсказать заранее (иначе система наблюдения была бы не нужна), поэтому естественно рассматривать эти значения как случайные величины (СВ), применяя аппарат теории вероятностей и математической статистики. Итак, приходим к основной модели МИ – системе СВ, заданных на многомерной сетке. Такие системы называются дискретными случайными полями (СП) или случайными функциями нескольких переменных.

Для описания СП, как и любой другой системы СВ, можно задать сов-местную функцию распределения вероятностей (ФР) его элементов или совместную плотность распределения вероятностей (ПРВ) . Однако И обычно состоит из очень большого количества элементов (тысячи и миллионы), поэтому ФР (или ПРВ) при таком количестве переменных становится необозримой и требуются другие, менее громоздкие методы описания СП.


Развитие основных психических процессов - памяти, внимания, воображения, образного мышления, речи; перекодирование информации, т.е. преобразование из абстрактных символов в образы; формирование навыка самостоятельного моделирования; развитие мелкой моторики при частичном или полном графическом воспроизведении. Развитие у детей познавательного интереса к математике Значение моделирования в развитии дошкольников.


Использование моделирования в развитии математических представлений дошкольников дает ощутимые положительные результаты, а именно: -позволяет выявить скрытые связи между явлениями и сделать их доступными пониманию ребенка; -улучшает понимание ребенком структуры и взаимосвязи составных частей объекта или явления; - повышает наблюдательность ребенка, дает ему возможность заметить особенности окружающего мира;


Этапы работы с моделями Четырех ступенчатая последовательность применения метода моделирования. Первый этап предполагает знакомство со смыслом арифметических действий. Второй - обучение описанию этих действий на языке математических знаков и символов. Третий - обучение простейшим приемам арифметических вычислений Четвертый этап - обучение способам решения задач Этапы работы с моделями






Наглядная плоскостная модель "Домик, где знаки и числа живут" Цель применения: -закрепить умения детей составлять числа из двух меньших; складывать и вычитать числа; -дать детям представления о неизменности числа, величины при условии различий в суммировании; - учить или закреплять умение сравнивать числа (больше, меньше, равно).




Наглядная плоскостная модель "Солнечная система" Только для детей старшей и подготовительной группы. Цели применения: -дать (или закрепить) представления детей о геометрических телах и фигурах (сравнивая круг, шар с другими геометрическими телами и фигурами); -научить детей определять и отражать в речи основания группировки, классификации, связи и зависимости полученной группы (солнечная система); -научить (или закрепить) умение детей определять последовательность ряда предметов по размеру; -развивать понимание пространственных отношений, определять местонахождение одних объектов относительно других; -совершенствовать порядковый и количественный счет; -закрепить умение пользоваться условной меркой для измерения расстояний; - закрепить умение решать арифметические задачи.




Наглядная плоскостная модель "Счетный торт" Цель применения: -учить детей решать арифметические задачи и развивать познавательные способности ребенка; - учить выделять математические отношения между величинами, ориентироваться в них.

Математическая модель - приближенное описание объекта моделирования, выраженное с помощью математической символики .

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математическая модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического моделирования изображены на рисунке. Первый этап - определение целей моделирования . Эти цели могут быть различными:

1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);

2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);

3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, “вдруг” начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап : определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. Формализация и моделирование ”).

Третий этап : построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление.

Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап : выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап : разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, C, - в зависимости от характера задачи и склонностей программиста.

Шестой этап : тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап : собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

· дескриптивные (описательные) модели;

· оптимизационные модели;

· многокритериальные модели;

· игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3–4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях.
Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель.
Второй - выполнение проекта учащимися под руководством учителя.
Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

· с помощью табличного процессора (как правило, MS Excel);

· путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual Basic for Application и т.п.);

· с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.



Вверх