Современные проблемы науки и образования. Ультрафиолетовая спектроскопия Уф видимая спектроскопия

Фотометрические (абсорбционные) методы анализа основа-ны на способности анализируемого вещества избирательно по-глощать свет.

Анализ веществ, основанный на измерении светопоглощё-ния, включает спектрофотометрию и фотоколориметрию.

Спектрофотометрия основана на поглощении монохромати-ческого света, т. е. света определенной длины волны (1-2 нм) в видимой, ультрафиолетовой и инфракрасной областях спектра.

Такого рода измерения поглощения света осуществляются при помощи спектрофотометров различных марок, в которых используется всегда монохроматический поток световой энер-гии, получаемый посредством оптической системы, называемой монохроматором.

Поглощение в ультрафиолетовой (УФ) и видимой областях спектра связано в основном с возбуждением электронов.

Поглощение света в инфракрасной области спектра (ИК) обусловлено молекулярными колебаниями.

В зависимости от диапазона длин волн, при которых измеряют светопо-глощение растворов химических ве-ществ, методы, основанные на измере-нии светопоглощения, подразделяются на спектрофотометрию в УФ-области спектра с диапазоном длин волн 200- 400 нм, спектрофотометрию в види-мой области спектра (400-760 нм) и спектрофотометрию в инфракрасной области спектра (760-20 000 нм). Но обычно единицей измерения длин волн ИК-спектров является микрон (1 мк= = 10 -4 см) или волновое число (см -1), т. е, число волн в 1 см.

В фармацевтическом анализе чаще используется спектроско-пия в УФ- и видимой области спектра.

Метод УФ-спектроскопии включен в ГФ IX, ГФ X и МФ II, а также в последние издания фармакопеи почти всех стран для определения подлинности, чистоты и количественного опреде-ления вещества в препаратах.

Абсорбционный спектр или спектр поглощения представляет собой графическое изображение количества света, поглощенно-го веществом при определенных значениях длин волн.

Для построения характеристической кривой поглощения - величины длин волн (Я,) при УФ-спектроскопии или волновые числа (см -1) при ИК-спектроскопии - наносят на ось абсцисс, а величину погашения (Л) 1 или проценты пропускания (Г) (при ИК-спектроскопии) - на ось ординат (рис. 5, 6).

При построении кривых спектров погашения в УФ- и види-мой части спектров можно использовать величины удельных показателей погашения (Ј 1% i CM) или молярного показателя поглощения (е) 2 , где е - оптическая плотность 1 М раствора ве-щества при толщине слоя в 1 см; Ј 1% i CM - величина погашения раствора, содержащего 1 г вещества в 100 мл раствора при тол-щине слоя в 1 см.

Эти величины определяются экспериментально, для многих веществ они приведены в литературе.

Характеристикой спектра поглощения является положение максимумов (минимумов) поглощения света веществом, а так-же интенсивность поглощения, что характеризуется оптической плотностью (D ) или удельным показателем поглощения (Ј 1% 1см) при определенных длинах волн.

УФ-спектрофотометрическое измерение проводят обычно в растворах. В качестве растворителей используется дистиллиро-

ванная вода, кислоты, щелочи, спирты (этиловый, метиловый) и некоторые другие органические растворители.

Растворитель не должен поглощать свет в той области спектра, что и исследуемое вещество. Характер спектра может изменяться в различных растворителях, а также при изменении рН среды.

Факторами, обусловливающими поглощение света исследуе-мыми веществами, является наличие в их молекулах так назы-

Каждая функциональная группа в молекуле вещества ха-рактеризуется поглощением света в определенной области спектра, что и используется для целей идентификации и коли-чественного определения вещества в препарате.

Кроме хромофоров, в состав молекулы могут входить функ-циональные группы, которые сами по себе не поглощают в близ-ком ультрафиолете, но могут влиять на поведение сопряжен-ного с ними хромофора. Такие группы, называемые ауксохро-мами, обычно вызывают появление поглощения при больших длинах волн и с большим значением коэффициента погашения, чем это свойственно данному хромофору. Примеры ауксохро-мов: -SH, -NH 2 , -ОН.

ИК-спектры для большинства органических соединений, в отличие от УФ-спектров, характеризуются наличием большего числа пиков поглощения (см. рис. 6). Поэтому метод ПК-спект-роскопии дает возможность получить наиболее полную инфор-мацию о строении и составе анализируемого вещества, позво-ляющую идентифицировать очень близкие по структуре соеди-нения.

В ГФ X и МФ II метод ИК-спектроскопии принят для иден-тификации многих органических лекарственных веществ с по-лифункциональными группами в их молекулах путем сравнения со спектрами стандартных образцов, снятых в одинаковых ус-ловиях. В оригинальной литературе последних лет приведены! ИК-спектры антибиотиков, гормонов, кумаринов и многих дру-гих Лекарственных веществ органической природы. В связи с-возрастающими требованиями к качеству лекарств ИК-спектро-скопия как один из надежных методов идентификации приобре-тает все большее значение.

Для атомной спектроскопии надо разрушить вещество на отдельные атомы, а для молекулярной нельзя, поэтому обычно исследуют спектры поглощения в УФ, видимом и ИК-диапазонах при обычных температурах. Атомы и молекулы подчиняются законам квантовой механики. Они могут находиться в состояниях с различными энергиями за счёт переходов электронов на более высокие уровни, а для молекул также за счёт колебаний и вращений. Энергетические уровни каждого вида движений дискретны и характеризуются квантовыми числами. Энергия двухатомнеой молекулы состоит из электронной, колебательной и вращательной,

Е = Е эл + Е кол + Е вр.

Е эл >> E колеб >> Е вращ

На рисунке пример энергетических уровней двухатомной молекулы. Показаны два электронных сосояния - основное и первое возбуждённое. Каждое состояние имеет подуровани за счёт колебательных состояний, в те свори подуровни за счёт вращательных.Уровней много по сравнению с атомами, между ними возможно много переходов, близких по частотам, они сливаются друг с другом и вместо линий наблюдаются полосы. Атомные спектры линейные, молекулярные - полосатые.

Молекулярные спектры исследуются с помощью двух типов спектрометров – УФ (объединённого с видимым) и ИК.

Уф и видимая спектроскопия

Исследуются электронные спектры поглощения, связанные с переходом электронов на более высокие энергетические уровни. Наблюдаются спектры органических молекул, содержащие двойные или тройные связи, либо атомы с неподелёнными электронными парами (поглощающие группы называются хромофорами). Пример в таблице, где приведены длины волн, соответствующие максимуму полосы УФ-спектра.

Хромофор

молекула

 max (ммк)

C 2 H 5 CH=C=CH 2

Обнаружение в спектрах таких полос обнаруживает входящие в молекулу группы, что важно для качественного анализа. Количественный анализ основан на измерении коэффициента поглощения света исследуемым раствором на определённых частотах.

УФ-спектрофотометр состоит из источника излучения, призмы, щели и фотоэлемента. Источник -водородная лампа, то-есть дуга постоянного тока в атмосфере водорода при низком давлении, дающая сплошное излучение в широкой области частот. Свет проходит через призму и затем через щель, которая выделяет узкую область длин волн (частот). Далее свет проходит через кювету - сосуд с плоскопараллельными прозрачными стенками, заполненный исследуемым раствором и попадает на фотоэлемент. Коэффициент поглощения света - отношение интенсивностей падающего на образец и прошедшего через него лучей света от источника. Для того, чтобы сделать поправку на поглощение света растворителем, используют эталонный образец с чистым растворителем. Светопоглощение измеряют по двух- или однолучевой схеме. В первом случае световой поток источника делят на 2 потока равной интенсивности и один пропускают через исследуемый раствор, другой - через эталонный, затем сравнивают интенсивности потоков на выходе. При однолучевой схеме оба раствора устанавливаются по очереди.

Этот же прибор используют для записи спектров в видимой области, в качестве источника применяют лампу накаливания.

Для всех методов молекулярной спектроскопии справедлив закон Бугера- Ламберта-Бэра:

I=I 0 exp(-lc)

ln(I 0 /I)=lc

где молярный коэффициент поглощения (л/моль см), с - концентрация, l - толщина кюветы, I 0 - интенсивность падающего потока, I - интенсивность выходящего потока; отношение I 0 /I называется пропусканием, а log(I o /I) называется оптической плотностью, Если в растворе присутствуют несколько поглощающих веществ, то оптическая плотность раствора равна сумме вкладов каждого из компонентов.

Закон Бугера-Ламберта-Бэра строго выполняется для монохроматического излучения,

Иногда для измерений применяют фотоколориметры, в которых используется ограниченный набор сменных широкополосных стеклянных светофильтров; эти приборы не являются спектральными приборами.

Спектрофотометрия в УФ и видимом диапазонах широко применяется в анализе веществ; в частности, для определения окрашенных соединений ряда металлов, а также As, P, для определения некоторых функциональных групп органических соединений, например фенолов и соединений с кратными химическими связями.

Для увеличения селективности определения применяют фотометрические реагенты, селективно взаимодействующие с определяемым веществом с образованием окрашенного продукта. Например, при определении Fe, Mo, W, Nb, Co и др. применяют тиоцианаты, а при определении меди - аммиак. В качестве фотометрических реагентов, образующих окрашенные комплексы с катионами металлов, широко применяют органические красители. Используется также предварительное разделение компонентов.

Преимущества этой спектрофотометрии - относительная простота аппаратуры, большой опыт применения. Недостаток - невысокая селективность.

Минимальная концентрация, определяемая спектрофотометрическим методом, не ниже 10 -7 М, то-есть чувствительность методов средняя.

Подробности Опубликовано 27.12.2019

Дорогие читатели! Коллектив библиотеки поздравляет вас с Новым годом и Рождеством! От всей души желаем счастья, любви, здоровья, успехов и радости вам и вашим семьям!
Пусть грядущий год подарит вам благополучие, взаимопонимание, гармонию и хорошее настроение.
Удачи, процветания и исполнения самых заветных желаний в новом году!

Тестовый доступ к ЭБС Ibooks.ru

Подробности Опубликовано 03.12.2019

Уважаемые читатели! До 31.12.2019 нашему университету предоставлен тестовый доступ к ЭБС Ibooks.ru , где вы сможете ознакомиться с любой книгой в режиме полнотекстового чтения. Доступ возможен со всех компьютеров сети университета. Для получения удалённого доступа необходима регистрация.

«Генрих Осипович Графтио - к 150 - летию со дня рождения»

Подробности Опубликовано 02.12.2019

Уважаемые читатели! В разделе "Виртуальные выставки" размещена новая виртуальная выставка «Генрих Осипович Графтио». В 2019 году исполняется 150 лет со дня рождения Генриха Осиповича - одного из основателей гидроэнергетической отрасли нашей страны. Ученый-энциклопедист, талантливый инженер и выдающийся организатор, Генрих Осипович внес огромный вклад в развитие отечественной энергетики.

Выставка подготовлена сотрудниками отдела научной литературы библиотеки. На выставке представлены труды Генриха Осиповича из фонда истории ЛЭТИ и публикации о нём.

Ознакомиться с выставкой Вы можете

Тестовый доступ к Электронно-библиотечной системе IPRbooks

Подробности Опубликовано 11.11.2019

Уважаемые читатели! C 08.11.2019 г. по 31.12.2019 г. нашему университету предоставлен бесплатный тестовый доступ к крупнейшей российской полнотекстовой базе данных - Электронно-библиотечной системе IPR BOOKS . ЭБС IPR BOOKS содержит более 130 000 изданий, из которых более 50 000 - уникальные учебные и научные издания. На платформе Вам доступны актуальные книги, которые невозможно найти в открытом доступе в сети Интернет.

Доступ возможен со всех компьютеров сети университета.

Для получения удаленного доступа необходимо обратиться в отдел электронных ресурсов (ауд. 1247) к администратору ВЧЗ Склеймовой Полине Юрьевне или по электронной почте [email protected] с темой "Регистрация в IPRbooks".

Методы анализа антибиотиков

Активность устанавливают

Единица действия (ЕД)

Сердечные гликозиды

Витамины



Под сроком годности



Окисление

30. Рефрактометрия

Рефрактометрия

Альдегидная группа

1. + фенилгидразина гидрохлорид в виде солянокислого раствора – образование желтого хлопьевидного остатка фенилгидразона.

2. образование основания Шиффа при взаимодействии с ароматическими аминами.

На третичный атом азота

1. с осадительными (общеалкалоидными) реактивами : Вагнера, Майера, Драгендорфа, раствором пикриновой кислоты, а также с раствором дихромата калия.

На атом фосфора

1. Фосфат-ионы образуют с раствором молибдата аммония желтый осадок фосфор-молибдата.

Количественное определние

Фенольный гидроксил

1. + хлорид железа (III). Растворы (водные, спиртовые или ацетоновые) приобретают зеленое окрашивание.

2. Азосочетание.

3. Обр-ие ауринового красителя

Нитрогруппа

1. После гидрирования нитрогруппы в молекуле нитроксолина до ароматической аминогруппы, выполняют реакцию диазотирования и азосочетания со щелочным раствором β-нафтола. Появляется красно-оранжевое окрашивание.

2. + дифениламин в присутствии концентрированной серной кислоты (синее окрашивание).

3. + гидроксид натрия – образуется ацисоли (красно-оранжевое окрашивание).

Третичный атом азота

1. при нагревании в растворе лимонной кислоты и уксусном ангидриде, то появляется пурпурно-красное окрашивание.

2. с осадительными (общеалкалоидными) реактивами : Вагнера, Майера, Драгендорфа, раствором пикриновой кислоты, а также с раствором дихромата калия (желтый осадок).

Нитроксалин образует окрашенные внутрикомплексные соединения с катионами металлов: магния, кадмия, меди (II), цинка, алюминия.

Количественное определние

Нитроксолин определяют методом неводного титрования, используя в качестве растворителя уксусный ангидрид и титранта - 0,1 М раствор хлорной кислоты. Определение нитроксолина выполняют в присутствии муравьиной кислоты и индикатора малахитового зеленого, а определение хлорхинальдола проводят с индикатором кристаллическим фиолетовым.

Сложноэфирная группа

1. гидроксамовая проба

2. + гидроксид натрия

Фенольный гидроксил

1. + хлорид железа (III) и a,a-дипиридил в смеси этанола и бензола. Появляется красное окрашивание.

2. реакции окисления, сопровождающиеся образованием окрашенных веществ.

1 – при нагревании до 80 C с концентрированной азотной кислотой происходит образование окрашенного в красно-оранжевый цвет.

2 – при добавлении гексацианоферрата (III) калия в щелочной среде образуется окрашенный продукт.

3 – соли церия (IV), железа (III), происходит окисление токоферола до о-, n -токоферилхинона, образование которого обусловливает желтое окрашивание.

Эту химическую реакцию используют для количественного определения токоферола ацетата. Определение основано на кислотном гидролизе (кипячением с обратным холодильником в присутствии серной кислоты). Затем выделившийся токоферол титруют сульфатом церия (IV) (индикатор дифениламин) до появления сине-фиолетового окрашивания.

Производные птеридина

Птеридин - гетероциклическая система, состоящая из двух конденсированных гетероциклов пиримидина и пиразина:

К этой группе относится: Фолиевая кислота.

Кислоту фолиевую хранят в хорошо укупоренной таре, в сухом, темном месте, так как она гигроскопична и разлагается под действием света. Особенно быстро процесс разложения происходит в кислой среде в растворах под воздействием ультрафиолетового излучения.

Требования к условиям хранения различных групп ЛВ находятся в зависимости от их физико-химических свойств и воздействия различных факторов внеш­ней среды. Они регламентируют­ся «Инструкцией по организации хранения в аптечных учреждениях различных групп лекарственных средств и изделий медицинского назначения», утвержденной приказом МЗ РФ №377 от 13 ноября 1996 г.

Метод осаждения

Навеску анализируемого вещества растворяют в воде или другом растворителе и осаждают определяемый элемент реактивом в виде малорастворимого соединения. Полученный осадок отфильтровывают, промывают, высушивают, прокаливают и взвешивают. Зная массу осадка, вычисляют содержание определяемого элемента в массовых долях или процентах от взятой навески.

Осажденной формой называют соединение, в виде которого определяемый компонент осаждается из раствора.

Гравиметрической (весовой) формой называют соединение, которое взве­шивают.

Метод выделения

Основан на выделении определяемого компонента из анализируемого вещества и его точном взвешивании.

Метод отгонки

В этом методе определяемый компонент выделяют в виде летучего соединения действием кислоты или высокой температуры.

· Прямая отгонка (определяемый компонент выделяют из пробы в виде газообразного продукта, улавливают и затем определяют его мас­су).

· Косвенная отгонка (массу газообразного продукта определяют по разности масс анализируемого компонента до и после термической обработ­ки).

В практике фармацевтического анализа этот метод широко применяется при определении влажности лекарственных препаратов, растительного сырья.

Методы анализа антибиотиков

Активность устанавливают диффузионным или турбидиметрическим методами . ГФ XI рекомендует для количественного определения метод диффузии в агар, заключающийся в сравнении действия определенных концентраций испытуемого и стандартного образца антибиотика на тест-микроорганизм.

Поскольку состав агаровой среды и условия выполнения биологиче­ского испытания одинаковы, величина зоны диффузии (в которой развитие тест-микроорганизма подавляется антибиотиком) зависит только от химической природы антибиотика и его концентрации.

Единица действия (ЕД) представляет собой меру, кото­рой выражается биологическая активность антибиотиков. За ЕД при­нимают минимальное количество антибиотика, подавляющего развитие тест-микроорганизма в определенном объеме питательной среды.

К ускоренным микробиологическим методам относят методы, осно­ванные на подавлении изменений рН питательной среды в процессе роста тест-микроорганизмов (уреазный метод).

Сердечные гликозиды - безазотистые соединения растительного происхождения, характеризующиеся кардиотоническим действием. Данные препараты играют исключительно важную роль в терапии больных с острой и хронической сердечной недостаточностью любого генеза. При определении активности лекарственного сырья и многих препаратов сердечных гликозидов используют биологическую стандартизацию. Наиболее часто активность сердечных гликозидов выражают в лягушачьих единицах действия (ЛЕД) и кошачьих единицах действия (КЕД). Одна ЛЕД соответствует минимальной дозе стандартного препарата, в которой он вызывает остановку сердца у большинства подопытных лягушек, кошек, голубей. Так, размельченный порошок листьев наперстянки по активности соответствует такой пропорции: один грамм порошка листьев равен 50-66 ЛЕД или 10-13 КЕД. В процессе хранения активность листьев уменьшается.

Витамины представляют собой группу веществ различной химиче­ской структуры, необходимых в малых количествах для нормальной жизнедеятельности организма. Ряд витаминов входят в состав фер­ментных систем и являются своеобразными биологическими катализа­торами химических или фотохимических процессов, происходящих в живой клетке (тиамин, рибофлавин, пиридоксин, пантотеновая кисло­та и др.).

Для качественной и количественной оценки витаминов в природ­ных источниках используют как биологические, так и физико-химиче­ские методы. Принцип оценки биологической активности заключается в том, что животных (крыс, голубей, морских свинок) переводят на диету, содер­жащую белки, жиры, углеводы, минеральные соли и все витамины, кроме исследуемого. Затем устанавливают, какое количество испытуемого витамина может излечить или предохранить животное от авита­миноза. Параллельно проводят аналогичное испытание со стандартным препаратом.

Биологический метод оценки активности витаминов очень трудо­емок, точность его сравнительно невелика. Поэтому для испытания подлинности и количественного определения витаминов обычно ис­пользуют физические, химические и физико-химические методы.

28. Стабильность и сроки годности ЛС (влияние влаги, CO 2 , света, кислорода воздуха, примесей).

Под сроком годности лекарственных средств понимают период времени, в течение которого они должны полностью сохранять свою терапевтическую активность, безвредность и по уровню качественных и количественных характеристик соответствовать требованиям ГФ или ФС (ФСП), в соответствии с которыми были выпущены и хранились в условиях, предусмотренных указанными статьями.

По истечении срока годности ЛС не может быть использовано без переконтроля качества и соответствующего изменения установлен­ного срока годности. Существует определенная взаимосвязь между понятием «срок годности», имеющим временной смысл, и понятием «стабильность», обусловливающим качество ЛС (его устойчивость).

Температура – с увеличением увеличивается скорость реакции; с понижением (понижается активность MgSO 4 , CaCl 2 , раствора адреналина).

Свет – повышается скорость разложения; кристаллические сухие вещества более устойчивы, чем растворы; изменение цвета при длительном освещении; некоторые вещества сохраняют свою активность (содержащие железо, при этом повышается их стабильность).

Влага – снижает фармакологическую активность; + и – влияет на ЛВ; гигроскопичность.

Окисление - процесс, являющийся одной из причин разложения ЛВ. Некоторые из них (производные фенолов) окисляются, находясь в кристаллическом состоянии. Процесс окисле­ния заметно активизируется при растворении. Особенно легко окисляются ЛВ, проявляющие активные восстановитель­ные свойства (альдегиды, гидразиды, производные фенотиазина и др.).

Система мер, направленных на предохранение ЛВ от окисления, сводится прежде всего к уменьшению влияния атмосферного кислорода или максимальному удалению примесей, катализирующих процесс окисления. Используя окислители, можно смоделировать процесс окисле­ния. Если затем сравнить полученные продукты окисления стандарт­ного образца и продукты разложения ЛВ, то можно сделать заключение о механизме процесса окисления. Это позволяет решать вопрос о путях стабилизации, так как станут известны факторы, вли­яющие на скорость реакции окисления.

Методы повышения стабильности:

1) физические (твердые вещества – в плотно укупоренной таре; суспензии – в сухом состоянии; инъекции – в ампулах запечатанных);

2) химические (окисление, металлы).

29. Фармакокинетика и биодоступность.

Фармакокинетика – раздел фармакологии о всасывании, распределении, депонировании, метаболизме и выделении ЛВ.

Проведение фармакокинетических исследований возможно только на основе применения современных методов биофармацевтического анализа, позволяющих проследить процесс всасывания и распределения ЛВ в орга­нах и тканях. Они включают выяснение влияния различных биофар­мацевтических факторов на терапевтическую эффективность ЛВ; изучение их биологической доступности и разработку методов ее определения; создание способов определения ЛВ и их метаболитов в биологических жидкостях.

На фармакокинетику ЛВ оказывают влияние различные факторы: воз­растные, генетические, половые, масса тела, питание, беременность, а также различные патологические процессы, например заболевания печени, почек, сердечно-сосудистой системы, желудочно-кишечного тракта, эндокринные, инфекционные и другие заболевания.

Биодоступность – количество неизменного вещества, которое достигло плазмы крови, относительно исходной дозы препарата.

Одним из основных этапов любого исследования биологической доступности ЛС является использование биофар­мацевтического анализа для определения концентрации ЛВ (метаболита) в биологических жидкостях.

30. Рефрактометрия

Рефрактометрия основана на наличии зависимости величины показателя преломления света от концентрации раствора испытуемого вещества. Показатель преломления зависит также от температуры, длины волны света, концентрации вещества и природы растворителя. Рефрактометрию используют для установления подлинности лекарственных веществ по молярной рефракции. Для количественного определения выбирают интервал линейной зависимости между концентрацией раствора и коэффициентом преломления. В этом интервале концентрацию (х) вычисляют по формуле: х=(n – n O)/F, где n - показатель преломления раствора вещества; n O - показатель преломления растворителя; F - фактор, равный величине прироста показателя преломления при увеличении концентрации вещества на 1% (устанавливается экспериментально).

Рефрактометрические определения выполняют на рефрактометрах, при стабильной температуре (20±0,3 О C) и длине волны линии D спектра натрия (589,3 нм) в диапозоне показателей преломления от 1,3 до 1,7. Прибор юстируют по эталонным жидкостям или воде очищенной, для которой n D 20 = 1,3330.

Спектрофотометрия в УФ-, видимой, ИК-областях спектра в оценке качества ЛС.

Используют спектрофотометрические методы анализа по поглощению веществами монохроматического электромагнитного излучения.

Фотометрические методы анализа основаны на использовании закона Бугера-Ламберта-Бера:

В случае несоответствия закону вначале с помощью стандартного раствора устанавливают зависимость оптической плотности от концентрации, а затем строят калибровочный график, с помощью которого выполняют расчеты.

Диапазоны света:

Спектрофотометрия в УФ- и видимой областях – 1 из широко используемых физико-химических методов в фармацевтическом анализе.

Анализируемые ЛВ должны иметь в структуре молекулы хромофорные группы (сопряженные связи, ароматическое ядро и др.), обусловливающие различные электронные переходы в молекулах и поглощение электромагнитного излучения.

Кривая зависимости интенсивности светопоглощения от длины волны (нм) называется спектром поглощения вещества и является его специфической характеристикой. Измерение спектров поглощения растворов анализируемых веществ в УФ (190-380 нм) и видимой (380-780 нм) областях производят с помощью спектрофотометров различных марок (СФ-26, СФ-46 и др.). В качестве растворителей используют свободные от примесей воду, растворы кислот и щело­чей, этанол, хлороформ и другие органические растворители.

Удельный показатель поглощения представляет собой величину оптической плотности раствора, содержащего 1,0 г вещества в 100 мл раствора, измеренную в кювете с рабочей длиной 1 см. Установив по стандартному образцу величину E и преобразовав эту формулу, можно рассчитать концентрацию анализируемого вещества с относительной погрешностью до ±2%.

Константа измеряется в различных единицах; в молях – молярный коэффициент поглощения, в % - удельный показатель поглощения

Идентификацию ЛВ можно провести по, Е, характеру спектральных кривых в различных растворителях, положению максимума и минимума светопоглощения или их отношению (при различных длинах волн). Для количественного спектрофотометрического анализа важен выбор аналитической полосы поглощения. Последняя должна быть свободна от наложения полос поглощения других компонентов смеси и иметь достаточно высокий удельный показатель поглощения анализируемого вещества.

Спектрофотометрия в ИК-области. Природа полос поглощения в ИК области связана с колебательными переходами и изменением колебательных состояний ядер, входящих в молекулу поглощающего вещества. Поэтому поглощением в ИК-области обладают молекулы, дипольные моменты которых изменяются при возбуждении колебательных движений ядер. Область применения ИК-спектроскопии аналогична, но более широка, чем у УФ-метода. ИК-спектр однозначно ха­рактеризует всю структуру молекулы, включая незначительные ее изменения. Важные преимущества ИК-спектроскопии - высокая специфичность, объективность полученных результатов, возможность анализа веществ в кристаллическом состо­янии. Для измерения ИК-спектров на однолучевых или двулучевых ИК-спектрофотометрах используют взвеси веществ в вазелиновом масле или помещают анализируемое вещество между пластинами из бромида калия.

Каждый ИК-спектр представляет собой серию полос поглощения, максимумы которых определяются волновым числом, измеряемым в см -1 , и определенной интенсивностью. Для анализа ЛB обычно используют спектральную область от 4000 до 400 см -1 .

ГФ XI рекомендует два способа установления подлинности по ИК-спектрам. Один из них основан на сравнении заре­гистрированных в идентичных условиях ИК-спектров испытуемого ЛB и его стандартного образца. Второй способ заклю­чается в сравнении ИК-спектра испытуемого ЛB с его стандартным спектром, прилагаемым к ФС и зарегистрированным в соответствии с указанными в ней требованиями.

1

Восстановление клеток, поврежденных УФ ‑излучением, является сложнейшим процессом, совершенствующимся с момента зарождения живого. На ранних этапах развития жизни наличие интенсивного УФ - излучения, в том числе и коротковолнового (вследствие отсутствия атмосферных экранов), привело к развитию мощных, репарирующих УФ -повреждения, внутриклеточных систем, которые в настоящих условиях для большинства клеток многоклеточных животных являются избыточными. При достаточно низкой интенсивности облучения репарационные процессы в клетке успевают устранять возникающие повреждения раньше, чем их количество превысит некоторое "критическое" значение, приводящее к появлению нерепарабельных нарушений. Клеточные системы успевают закончить репарацию генома за время, измеряющиеся несколькими часами, но для отдельных, наиболее активных сайтов ДНК, репарация тиминовых димеров происходит значительно быстрее. Время, в течение которого внешние воздействия могут изменить интегральный ответ клетки на импульсное повреждающее воздействие, связано с процессами репарации. Для УФ ‑повреждённых кератиноцитов кожи это время (судя по результатам ингибиторного анализа) составляет десятки минут. Повреждающее воздействие можно считать "импульсным" (однократным) в том случае, если его длительность меньше времени, в течение которого определяется судьба повреждённой клетки. Есть основания считать, что для некоторых ответов клетки на УФ -повреждение это время измеряется секундами. Если по критерию МЭД закон взаимозаменяемости интенсивности и времени облучения для УФ ‑эритемы выполняется в интервале от долей до сотен секунд, то эритема от дозы, превышающей МЭД, возрастает с ростом интенсивности. Количественно это выражается в том, что при возрастании интенсивности облучения полным спектром лампы ПРК-2 на 3 порядка, тангенс угла наклона дозовой зависимости увеличивается более чем в 3 раза.

Современные знания о клеточных механизмах позволяют утверждать, что, кроме репарации клетки, существует ещё один вариант физиологического ответа клетки на повреждение - апоптоз, который препятствует "патологической" гибели клетки по механизму некроза. Программа элиминации клетки механизмом апоптоза включается при невозможности полной репарации. Повреждение при этом не должно превысить порог, при котором происходит поломка программы апоптоза. В последнем случае гибель клетки происходит по механизму некроза с формированием воспалительной реакции. Для УФ ‑излучения в качестве поглощённой дозы традиционно измеряют энергию, падающую на единицу поверхности облучаемого объекта, то есть поверхностную плотность дозы. Это возможно по той причине, что наиболее биологически активная часть УФ ‑излучения поглощается поверхностными слоями кожи. В промежутке между дозами повреждения, приводящими клетку к "чистому" апоптозу или к некрозу, возможна (при дозе УФВ излучения около 350 Дж/м 2) реализация программы апоптоза с "изменённой морфологией" или "провоспалительного апоптоза", который происходит при модификации программы апоптоза, вероятно, тем же самым повреждающим воздействием, которое и вызвало апоптоз. Экспериментально провоспалительный апоптоз был обнаружен в работе (Caricchio R e.a., J Immunol. Dec 2003). Бимодальность действия УФ -излучения на кератиноциты (немонотонная дозовая зависимость апоптоза) показана также и в других работах. Но природа этих явлений не установлена. Наиболее вероятной представляется модель, согласно которой исход УФ облучения кератиноцитов кожи определяется количеством (долей) УФ - поврежденных митохондрий. Данные предположения подтверждаются особенностями дозозависимой кинетики двухкомпонентной УФВ -эритемы кожи. Опыты на культуре человеческих кератиноцитов показывают, что при УФС -облучении производится значительно большее количество фотопродуктов (CPDs и (6-4)PPs), а приблизительно равный апоптогенный эффект УФС и УФВ излучений обусловлен тем, что УФВ облучение активирует не только митохондриальный, но и caspase-8 зависимый путь активации апоптоза (Takasawa R e.a., PubMed - in process Oct 2005). Важнейшей задачей является исследование связи УФ -индуцированного апоптоза с эритемогенезом, но при этом следует учитывать особенности поглощения УФ излучения в различных слоях кожи. Установление связи УФ -индуцированного апоптоза с эритемогенезом позволит разработать неинвазивный метод диагностики параметров системы апоптоза. В настоящее время особое внимание должно уделяться разработке методов диагностики, основанных на анализе развивающихся во времени реакций систем организма на какое-либо (внешнее) воздействие. Разрабатываемый метод диагностики характеризуют дешевизна, неинвазивность, абсолютная стерильность и возможность оказывать физиологическое, строго дозированное тестирующее воздействие на кожные и другие покровы.

Библиографическая ссылка

Бондырев Ю.А. АНАЛИЗ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ УФ ИЗЛУЧЕНИЯ КАК ТЕСТИРУЮЩЕГО ДИАГНОСТИЧЕСКОГО ВОЗДЕЙСТВИЯ // Современные проблемы науки и образования. – 2006. – № 2.;
URL: http://science-education.ru/ru/article/view?id=183 (дата обращения: 05.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Вверх