Скорость, сила и направление ветра. От чего зависит сила ветра? Чем определяют направление и силу ветра

Ветер представляет собой движение воздуха, которое происходит параллельно земной поверхности и имеет горизонтальный характер. Главным свойством такого потока считается вектор его скорости. На практике эта величина представляет числовое значение. Дополнительными характеристиками являются направление и сила ветра. По этим критериям существует сразу несколько классификаций.

Общие понятия

Ветер на планете Земля - это поток воздуха, преимущественно движущийся горизонтально. Подобное явление наблюдается и на других космических телах. Однако в этом случае речь уже идет о потоке атмосферных газов. Так различают солнечный и планетарный ветра.

Потоки воздуха на Земле классифицируются по скорости, масштабам, силе, воздействию на объекты и районам распространения. Тем не менее, главной характеристикой по-прежнему остается направление ветра. Также не следует забывать о его продолжительности. Именно по этим критериям ветра классифицируют в первую очередь. Например, кратковременные и длительные, сильные и слабые и т. д.

Мощными непродолжительными потоками называются шквалы. Их длительность редко превышает 1 минуту. Из наиболее продолжительных можно выделить бриз, шторм, бурю, тайфун и ураган. Все они дополнительно характеризуются силами возникновения и воздействия. В свою очередь, длительность ветра может быть от пары секунд до нескольких месяцев. Зависит это явление от разницы нагрева частиц воздуха, особенностей рельефа, циркуляцией атмосферы.

В редких случаях имеют место вертикальные ветра. Их движение направлено снизу вверх или наоборот. Такие потоки называются нисходящими или восходящими.

Способы измерения характеристик

Чтобы узнать, какое направление ветра, необходимо воспользоваться одним из специальных приборов. Каждый из таких инструментов показывает азимут точки исхода потока. Итоговые значения будут находиться в диапазоне 180 градусов.

Скорость и направление ветра можно измерить анемометром. Этот прибор нашел применение в энергетической промышленности. Поток ударяется о специальную мембрану. Толчок фиксируется датчиком, данные обрабатываются и выдаются на экран.

Для измерения сугубо направления ветра можно использовать обычный флюгер. Этот инструмент работает даже при малейшем дуновении. В итоге стрелка укажет направление ветра. Погрешность зависит от качества флюгера. В среднем она варьируется в пределах 2-3%.

Если под рукой отсутствуют необходимые инструменты, можно воспользоваться указательным пальцем. Просто смочить его и выставить вверх. Палец быстро ощутит прохладу. Таким образом, можно определить, с какой стороны движется поток. С другой стороны, подобная технология не действует при жарких влажных климатических условиях.

Направление ветра

Движение потока воздуха определяется горизонтально по той стороне, с которой оно исходит. Если дует на север, то направление ветра южное. Такое движение напрямую зависит от силы вращения планеты и распределения атмосферного давления. Чем ближе потоки к поверхности Земли, тем они вариативнее.

Как известно, вода и суша нагреваются с разной скоростью. В летнее время температура поверхности земли повышается быстро. Вследствие этого явления воздух нагревается, расширяется и становится куда легче. В свою очередь, над поверхностью воды всегда холоднее. Следовательно, потоки воздуха становятся тяжелее и сжатее. Поэтому именно со стороны воды всегда дует прохладный ветер. В ночное время потоки чаще исходят с берега.

Еще одним местом возникновения ветров может быть горная местность. В таким случае сухой и теплый поток называется "фен", а сильный и холодный - "бора".

Классификация по скорости ветра

Данная характеристика измеряется в баллах или метрах в секунду. Зависит от так называемого барического градиента. Чем его величина меньше, тем ниже скорость потока. Справочно: 1 балл примерно равняется 2 м/с.

Справедливо утверждение, что сила ветра напрямую зависит от его скорости. К тому же чем больше разность давления между задействованными участками поверхности, тем мощнее будет поток. На сегодняшний день существует шкала Бофорта, по которой определяется сила воздействия ветра:

Самые мощные ветра

Несколько лет назад шкала Бофорта была расширена американской национальной метеорологической службой. Дополнения относятся только к категории «ураган»:

12.1 балла - сильный ветровал. Его скорость составляет от 35 до 42 м/с. При этом ветер меняет направление постоянно. Разрушительное воздействие распространяется на телеграфные столбы и деревянные постройки.

12.2 балла. Такой ураган имеет скорость движения до 49 м/с. Отмечаются повреждения крыш, дверей и окон каменных построек.

12.3 балла. Ветер со скоростью до 58 м/с разрушает легкие дома, нагоняет волны с высотой до 3,5 м. Возможно наводнение.

12.4 балла. Такой ветровал характеризуется скоростью движения в 59-70 м/с. Поток вырывает средние деревья с корнями, наносит сильные повреждения прочным постройкам.

12.5 балла. Ветер со скоростью свыше 71 м/с разрушает мощные здания, в том числе каменные. В грунте остаются глубокие воронки. В небо поднимаются тяжелые предметы. Наводнение неизбежно.

Локальные ветра

Чаще всего такие потоки формируются на равнинах континента или над морем. Одним из наиболее распространенных видов является бриз. В этом случае преобладающее направление ветра характеризуется локальной циркуляцией теплого воздуха. Образуется благодаря перепаду низкого давления при положительной температуре.

Скорость локальных ветров редко превышает 4 м/с. Более интенсивные потоки исходят из горных хребтов. Формирование происходит на высотах, а дуновение - преимущественно в долинах.

Глобальные ветра

Речь идет о муссонах и пассатах. Первый вид глобальных ветров является сезонным. Он меняет свое направление всего 2 раза за год. Тропические муссоны двигаются со средних широт. Они преимущественно теплые. Внетропические дуют с полярных и умеренных широт, значительно снижая температуру воздуха.

Пассаты зависят от атмосферного давления. Чаще дуют с запада. В редких случаях можно наблюдать восточные и южные пассаты. Главной локацией распространения является зона экватора.

Ветром называют движение воздуха относительно земной поверхности, причем имеется в виду горизонтальная составляющая этого движения. Ветер характеризуется вектором скорости, но на практике под скоростью подразумевается только числовая величина скорости, направление вектора скорости называют направлением ветра. Скорость ветра выражается в метрах в секунду, в км в час и в узлах (морская миля в час). Чтобы перевести скорость из метров в секунду в узлы, достаточно умножить число метров в секунду на 2.

Существует еще одна оценка скорости или, как принято говорить в этом случае, силы ветра в баллах, шкала Бофорта, по которой весь интервал возможных скоростей ветра делится на 12 градаций. Эта шкала связывает силу ветра с различными эффектами, производимыми ветром разной скорости, такими, как степень волнения на море, качание ветвей деревьев, распространение дыма из труб. Каждая градация скорости ветра имеет определенное название (смотри таблицу с характеристиками ветра по шкале Бофорта).

Таблица 1. Характеристика скорости ветра по шкале Бофорта

Скорость ветра Внешние признаки
Характеристика ветра
Баллы м/с
0 0 - 0,5
штиль Полное отсутствие ветра. Дым поднимается отвесно.
1 0,6 - 1,7
тихий Дым отклоняется от вертикального направления, позволяя определить направление ветра. Зажженная спичка не гаснет, но пламя заметно отклоняется
2 1,8 - 3,3
легкий Движение воздуха можно определить лицом. Шелестят листья. Пламя зажженной спички быстро гаснет.
3 3,4 - 5,2
слабый Заметно колебание листьев деревьев. Развеваются легкие флаги.
4 5,3 - 7,4
умеренный Колеблются тонкие ветки. Поднимается пыль, клочки бумаги.
5 7,5 - 9,8
свежий Колеблются большие ветки. На воде поднимаются волны.
6 9,9 - 12,4
сильный Раскачиваются большие ветки. Гудят провода.
7 12,5 - 19,2
крепкий Качаются стволы небольших деревьев. На водоемах пенятся волны.
8 19,3 - 23,2
буря Ломаются ветви. Движение человека против ветра затруднено. Опасен для судов, буровых вышек и сходных сооружений.
9 23,3 - 26,5
сильная буря
Срываются домовые трубы и черепица с крыши, повреждаются легкие постройки.
10 26,6 - 30,1
полная буря
Деревья вырываются с корнем, происходят значительные разрушения легких построек.
11 30,2 - 35,0
шторм Ветер производит большие разрушения легких построек.
12 больше 35
ураган Ветер производит огромные разрушения

Для более полной оценки производимых сильными ветрами разрушений американской Национальной службой погоды шкала Бофорта была дополнена:

12.1 баллов, скорость ветра 35 - 42м/с. Сильный ветровал. Значительные разрушения легких деревянных построек. Валятся некоторые телеграфные столбы.

12.2. 42-49 м/с. Разрушаются до 50% легких деревянных построек, в прочих постройках - повреждения дверей, крыш, окон. Штормовой нагон воды на 1,6-2,4 м выше нормального уровня моря.

12.3. 49-58 м/с. Полное разрушение легких домов. В прочных постройках - большие повреждения. Штормовой нагон - на 1,5-3.5 м выше нормального уровня моря. Серьезное нагонное наводнение, повреждение зданий водой.

12.4. 58-70 м/с. Полный ветровал деревьев. Полное разрушение легких и сильное повреждение прочных построек. Штормовой нагон - на 3,5-5,5 м выше нормального уровня моря. Сильная абразия берегов. Сильные повреждения нижних этажей зданий водой.

12.5. более 70 м/с. Многие прочные постройки разрушаются ветром, при скорости 80-100 м/с - также каменные, при скорости 110 м/с - практически все. Штормовой нагон выше 5,5 м. Интенсивные разрушения наводнением.

Скорость ветра на метеостанциях измеряют анемометрами; если прибор самопишущий, то он называется анемографом. Анеморумбограф определяет не только скорость, но и направление ветра в режиме постоянной регистрации. Приборы для измерения скорости ветра устанавливают на высоте 10-15 м над поверхностью, и измеренный ими ветер называется ветром у земной поверхности.

Направление ветра определяют, назвав точку горизонта, откуда дует ветер или угол, образуемый направлением ветра с меридианом места, откуда дует ветер, т.е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад и 8 промежуточных.
8 основных румбов направления имеют следующие сокращения (русские и международные): С-N, Ю-S, З-W, В-E, СЗ-NW, СВ-NE, ЮЗ-SW, ЮВ-SE.



Если направление ветра характеризуется углом, то отсчет ведется от севера по часовой стрелке. В этом случае, север будет соответствовать 0 0 (360), северо-восток - 45 0 , восток - 90 0 , юг - 180 0 , запад - 270 0 .
При климатологической обработке наблюдений над ветром строят для каждого пункта диаграмму, представляющую собой распределение повторяемости направлений ветра по основным румбам - «розу ветров».
От начала полярных координат откладывают направление по румбам горизонта отрезками, длины которых пропорциональны повторяемости ветров данного направления. Концы отрезков соединяются ломаной линией. Повторяемость штилей указывают числом в центре диаграммы. При построении розы ветров можно учесть и среднюю скорость ветра по каждому направлению, умножив на нее повторяемость данного направления, тогда график покажет в условных единицах количество воздуха, переносимого ветрами каждого направления.

Геострофический ветер. Градиентный ветер. Геотриптический ветер.


Ветер возникает в связи с неравномерным распределением атмосферного давления, т.е. с наличием горизонтальных разностей давления. Мерой неравномерности распределения давления является горизонтальный барический градиент. Воздух стремится двигаться по направлению этого градиента, получая при этом ускорение тем большее, чем больше барический градиент. Следовательно, горизонтальный барический градиент есть сила, сообщающая воздуху ускорение, т.е. вызывающая ветер и меняющая его скорость. Все остальные силы, проявляющиеся при движении воздуха, могут лишь тормозить движение воздуха или отклонять его от направления градиента. Установлено, что градиент в 1 гПа на 100 км создает ускорение в 0.1 см/с2. Если бы на воздух действовала только сила барического градиента, то движение воздуха под действием этой силы было бы равномерно ускоренным, и при длительном воздействии воздух получил бы большие, не ограниченные скорости. Но в действительности на воздух действуют и другие силы, более или менее уравновешивающие силу градиента. Это, прежде всего, сила Кориолиса или отклоняющая сила вращения Земли. Поворотное ускорение или ускорение Кориолиса на Земле имеет величину

А=2wVsin y, (25)
где:
w - угловая скорость вращения Земли,
V - скорость ветра,
y - географическая широта.

При этом мы имеем в виду только горизонтальную составляющую поворотного ускорения. Из формулы ясно, что ускорение имеет наибольшее значение на полюсе и превращается в нуль на экваторе. Значение силы Кориолиса для ветра является величиной того же порядка, что и ускорение, создаваемое барическим градиентом. Поэтому, отклоняющая сила вращения Земли при движении воздуха может уравновесить силу барического градиента.
Ветер, на который действует только сила барического градиента и сила Кориолиса, называется геострофическим. При условии, что силы уравновешивают друг друга, движение ветра прямолинейное равномерное. Сила Кориолиса в Северном полушарии направлена под прямым углом к скорости движения вправо, а сила градиента, равная ей, должна быть направлена под прямым углом к скорости влево. Поэтому в северном полушарии геострофический ветер будет дуть вдоль изобар, оставляя низкое давление слева. В Южном полушарии геострофический ветер дует, оставляя низкое давление справа, так как сила Кориолиса направлена влево.
В реальных условиях геострофический ветер возникает в свободной атмосфере, на высотах больше 1 км, когда сила трения становится так мала, что ею можно пренебречь.
Если движение воздуха происходит без действия силы трения, но криволинейно, то это значит, что кроме силы градиента и силы Кориолиса, появляется еще центробежная сила:

С = V 2 /r, (26)
где:
V - скорость,
r - радиус кривизны траектории движущегося воздуха.
Направлена центробежная сила по радиусу кривизны траектории наружу, в сторону выпуклости траектории. Если движение воздуха равномерное, то все три силы уравновешены. Такой теоретический случай равномерного движения воздуха по круговым траекториям без влияния силы трения называют градиентным ветром. Для градиентного ветра возможны два случая: в циклоне и в антициклоне. В циклоне, т.е. в барической системе с самым низким давлением в центре, центробежная сила направлена всегда наружу, против силы градиента. Как правило, центробежная сила в действительных атмосферных условиях меньше силы градиента, поэтому для равновесия действующих сил нужно, чтобы сила Кориолиса была направлена так же, как центробежная сила, и они вместе уравновешивали бы силу градиента. Скорость же ветра должна отклоняться на прямой угол от силы Кориолиса, в северном полушарии влево. Ветер должен дуть по круговым изобарам циклона против часовой стрелки, отклоняясь от барического градиента вправо.
В антициклоне центробежная сила направлена наружу, в сторону выпуклости изобар, т.е. одинаково с силой градиента. Сила же Кориолиса должна быть направлена внутрь антициклона, чтобы уравновешивать две одинаково направленные силы - градиента и центробежную. Скорость же ветра должна быть направлена так, чтобы ветер дул по круговым изобарам антициклона по часовой стрелке. Но приведенные рассуждения касаются только северного полушария. В южном полушарии, где сила Кориолиса направлена влево от скорости, градиентный ветер будет отклоняться от градиента влево. Поэтому для южного полушария движение воздуха по изобарам в циклоне получается по часовой стрелке, а в антициклоне - против часовой стрелки. Действительный ветер близок к градиентному в циклонах и антициклонах только в свободной атмосфере, где нет влияния силы трения.
Трение в атмосфере является силой, которая сообщает уже существующему движению воздуха отрицательное ускорение, она замедляет движение и меняет его направление. Сила трения наиболее велика у земной поверхности, с высотой она убывает и на уровне 1000 м становится незначительной по сравнению с другими силами. Высота, на которой сила трения практически исчезает (в среднем 1000 м) называется уровнем трения, нижний слой тропосферы до уровня трения называется слоем трения, или планетарным пограничным слоем.
Скорость ветра вследствие трения уменьшается настолько, что у земной поверхности (на высоте флюгера) над сушей она вдвое меньше, чем скорость геострофического ветра, рассчитанного для того же барического градиента.
Равномерное прямолинейное движение воздуха при наличии трения называют геотриптическим ветром. Воздействие силы трения приводит к тому, что скорость геотриптического ветра направлена не по изобарам, а пересекает их, отклоняясь при этом от градиента вправо (в северном полушарии) и влево (в южном), но составляя с ним некоторый угол меньше прямого. Скорость ветра при этом можно разложить на две составляющие - по изобаре и по градиенту. В результате в слое трения в циклоне ветер будет дуть против часовой стрелки, втекая от периферии к центру (в северном полушарии) и по часовой стрелке также от периферии к центру (в южном полушарии). В антициклоне северного полушария ветер будет дуть по часовой стрелке, вынося воздух изнутри антициклона к периферии, а в антициклоне южного полушария - против часовой стрелки из центра антициклона к периферии.
Наблюдения подтверждают, что ветер у земной поверхности (за исключением широт, близких к экватору) отклоняется от барического градиента на некоторый угол меньше прямого (в северном полушарии вправо, в южном влево). Отсюда следует такое положение: если встать спиной к ветру, а лицом туда, куда дует ветер, то наиболее низкое давление окажется слева и несколько впереди, а наиболее высокое давление - справа и несколько сзади. Это положение было найдено эмпирически и носит название барического закона ветра или закона Бейс-Балло.

Зональность в распределении давления и ветра


Наиболее устойчивая особенность в распределении как ветра, так и давления над Землей - зональность. Причина этого - зональность в распределении температуры. Зональность перемещения воздушных масс (т.е. зональность циркуляции) проявляется в преобладании широтных составляющих ветра (западной и восточной) над меридиональными составляющими. Степень преобладания может быть различной. Над тропическими океанами преобладание восточных составляющих в переносе воздуха в нижней части тропосферы выражено очень резко. Хорошо выражено и преобладание западных ветров в умеренной зоне южного полушария. В северном полушарии это преобладание можно заметить лишь при статистической обработке длинного ряда наблюдений. А на востоке Азии в нижней тропосфере преобладают меридиональные составляющие.
Меридиональные составляющие переноса воздуха в общей циркуляции атмосферы, при меньшей величине по сравнению с зональными, имеют очень большое значение. Именно они обусловливают обмен воздуха между различными широтами Земли.
Зональное распределение давления и ветра наиболее отчетливо проявляется в свободной атмосфере, вне слоя трения. Как известно, распределение давления повторяет распределение температуры. Поскольку температура в тропосфере в среднем падает от низких широт к высоким, то и меридиональный барический градиент направлен, начиная с высоты 4-5 км, от низких широт к высоким. В связи с этим изобарическая поверхность в 300 гПа проходит зимой над экватором на высоте около 9700 м, над северным полюсом на высоте около 8400 м, над южным - на высоте 8100 м. При таком распределении горизонтального барического градиента градиентный ветер будет направлен в обоих полушариях с запада на восток. Таким образом, в верхней тропосфере и нижней стратосфере вокруг полюсов будет наблюдаться так называемый планетарный циклонический вихрь: против часовой стрелки над северным полушарием, и по часовой стрелке над южным. В низких широтах ситуация несколько иная. Дело в том, что самое высокое давление в верхней тропосфере наблюдается не над экватором, а в сравнительно узкой области вблизи экватора, и барический градиент в верхней тропосфере направлен к экватору. Это значит, что в верхней тропосфере над экваториальной зоной господствует восточный перенос.
В нижней стратосфере среднее распределение температуры по меридиану в летнее время противоположно тропосферному. Полярная стратосфера летом очень тепла в сравнении с тропической, и самые низкие температуры приходятся на экваториальную зону, а самые высокие - на полярную. Поэтому в стратосфере на высоте 18-20 км меридиональный градиент меняется на противоположный, направленный от полюса к экватору. Возникает околополярный антициклон и восточный перенос воздуха в летнем полушарии. Это явление получило название стратосферного обращения воздуха. В зимнем полушарии сохраняется западный перенос.
У земной поверхности и в нижней тропосфере (в слое трения) зональное распределение давления сложнее, что связано с распределением суши и моря.

Таблица 2. Средние широтные величины приземного давления в гПа.

Широта в градусах
Северное полушарие
Южное полушарие
Январь Июнь
Январь Июнь
90 1012 1009 - -
85 1012 1010 - -
80 1013 1012 - -
75 1013 1012 - -
70 1014 1011 990 993
65 1015 1010 988 991
60 1014 1010 991 992
55 1014 1011 998 997
50 1017 1012 1005 1004
45 1018 1013 1011 1010
40 1020 1014 1015 1015
35 1021 1014 1019 1016
30 1020 1014 1021 1015
25 1019 1012 1020 1013
20 1016 1011 1018 1012
15 1014 1010 1016 1011
10 1012 1010 1013 1010
5 1010 1011 1012 1010
0 1010 1011 - -

По обе стороны экватора имеется зона с пониженным давлением. В этой зоне в январе между 15 0 с.ш. и 25 0 ю.ш., а в июле между 35 0 с. ш. и 5 0 ю.ш. давление ниже 1013 гПа. При этом параллель с самым низким давлением приходится в январе на 5-10 0 ю.ш., а в июле - на 15 0 с.ш. Эта зона экваториальной депрессии, распространяющаяся больше на летнее полушарие.
В направлении высоких широт от этой зоны давление в каждом полушарии растет, и максимальное значение давления наблюдается в январе под 30-32 0 северной и южной широты, а в июле - под 33-37 0 с. ш. и 26-30 0 ю.ш. Это две субтропические зоны повышенного давления, которые от января к июлю несколько смещаются к северу, а от июля к январю - к югу. Средние значения давления в этой зоне 1018-1019 гПа.
От субтропиков к еще более высоким широтам давление падает. Под 70-75 0 с.ш. и под 60-65 0 ю.ш. наблюдается минимальное давление в двух субполярных зонах низкого давления, а еще дальше по направлению к полюсам давление снова растет. Средние годовые значения давления на уровне моря в высоких широтах составляют 1012 гПа в северном полушарии и 989 гПа - в южном. У полюсов давление снова растет и составляет 1014 гПа близ северного полюса и 991 гПа близ южного. Приведенные данные о положении широтных зон низкого и высокого давления свидетельствуют о различиях в их положении между полушариями. Так, зимой и летом ось субтропической зоны повышенного давления в южном полушарии расположена на 5 0 ближе к экватору, чем в северном полушарии. В связи с этим ось экваториальной ложбины большую часть года находится в северном полушарии, в среднем на год на широте около 5 0 . От субтропической зоны повышенного давления спад давления в полярной ложбине происходит быстрее в южном полушарии, чем в северном, и по средним широтным значениям приземного давления южная полярная ложбина выражена резче, чем северная. В связи с сезонным изменением притока солнечной радиации происходит смещение планетарных зон давления к полюсу летом соответствующего полушария и к экватору зимой. Летом северного полушария экваториальная ложбина сдвигается к северу, а зимой возвращается к югу. Годовое смещение горизонтальной ее оси равно 20 0 , сезонное смещение субтропических зон повышенного давления сравнительно мало. Принято считать, что от зимы к лету их горизонтальные оси смещаются на 5 0 широты.
Попытки количественно объяснить географическую привязанность широтных зон повышенного и пониженного давления делались давно, но удовлетворительного ответа еще нет. Поэтому в современных эмпирических моделях общей циркуляции атмосферы географическое положение зон разного давления принимается как данное. Образование зон высокого давления в субтропиках и зон низкого давления в субполярных широтах объясняют особенностями циклонической деятельности. Так, антициклоны, возникающие в умеренном поясе при общем западном переносе, при своем перемещении смещаются к более низким широтам и там усиливаются, создавая зону повышенного давления. Циклоны же, наоборот, при своем движении в тех же средних широтах смещаются в более высокие широты, образуя субполярную зону низкого давления. Такая сепарация циклонов и антициклонов зависит от изменения отклоняющей силы вращения Земли (силы Кориолиса) с широтой.



Зональное распределение давления и переносов воздуха у земной поверхности и в нижней тропосфере (схема). Справа — направление барических градиентов вдоль меридиана в соответствующих зонах.

Направление переноса воздушных масс в нижних слоях тропосферы связано с зональным размещением зон повышенного и пониженного давления По обращенной к полюсу периферии субтропической зоны в средних широтах создается западный перенос, он простирается до оси субполярной зоны, т.е. до 60-650 с. ш. и ю.ш. Наиболее хорошо западный перенос выражен над океанами в южном полушарии. Над материками повторяемость ветров западного направления реже.
По периферии субтропической зоны высокого давления, обращенной к экватору, т.е. в тропиках, барический градиент у земной поверхности направлен к экватору и здесь господствует восточный перенос, охватывающий всю тропическую зону. Это так называемые пассаты - устойчивые восточные тропические ветры.
В полярном районе барический градиент направлен от полюса к субполярным широтам, что создает восточный перенос воздуха. Наиболее отчетливо преобладание восточных ветров выражено в Антарктиде, где есть районы с постоянными восточными ветрами.



1. Скорость и направление ветра.

2. Силы, действующие на ветер. Теоретические виды ветра.

3. Режим ветра в РБ.

1. Скорость и направление ветра

Ветер – горизонтальное движение воздуха относительно земной поверхности.

В атмосфере наблюдаются движения различных масштабов – от десятков до сотен метров (местные ветры) до сотен и тысяч километров (циклоны, антициклоны, пассаты, муссоны). Воздушные течения направлены из областей высокого давления в сторону низкого давления. Отток воздуха идет до тех пор, пока не исчезнет разность давлений.

1.1. Скорость ветра

Ветер характеризуется вектором скорости. Скорость ветра можно измерять в различных единицах: в метрах в секунду (м/с), километрах в час (км/ч), узлах (морских милях в час), баллах. Различают сглаженную скорость ветра (за некоторый промежуток времени) и мгновенную.

У земли скорость средняя скорость ветра обычно составляет 5–10 м/с и редко превышает 12–15 м/с. В тропических ураганах она достигает до 60–65 м/с, в порывах – до 100 м/с; в смерчах и тромбах – 100 м/с и более. Максимальная измеренная скорость 87 м/с (Земля Адели, Антарктида).

Скорость ветра на большинстве метеостанций измеряют анемометры с вращающимися чашками, изобретенные в 1846 г. Кроме чашечных или крыльчатых анемометров оценить скорость ветра можно при помощи доски Вильда. Один из первых анемометров был изобретен в 1450 году итальянцем Леоном Альберти. Это был рычажный анемометр: ветер отталкивал шар или пластину в приборе, смещая их вдоль криволинейной шкалы с делениями. Чем сильнее ветер, тем сильнее смещался шар. Приборы для измерения скорости ветра устанавливаются на высоте 10–12 м.

1.2. Направление ветра

Направление ветра в метеорологии – направление, откуда он дует. Его можно указать, назвав точку горизонта, откуда дует ветер (т.е. румб) либо угол, который образует горизонтальный вектор скорости ветра с меридианом (т.е. азимут).

Направление ветра в высоких слоях атмосферы указывается в градусах, а в приземных – в румбах горизонта (рисунок 54). При наблюдениях направление ветра определяют по 16 румбам, но при обработке обычно результаты наблюдений сводят к 8 румбам.

Рисунок 54 – Румбы горизонта

Основные румбы (8): север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад. Промежуточные румбы (8): северо-северо-восток, восток-северо-восток, восток-юго-восток, юго-юго-восток, юго-юго-запад, запад-юго-запад, северо-северо-запад.

Международные названия румбов: север – N – норд; восток – Е – ост; юг – S – зюйд; запад – W – вест.

В некоторых местах ветры носят собственные имена по стороне, откуда они дуют. Пример: русский ветер – ветер из центральных областей Европейской России, на севере Европейской России – это южный ветер, в Сибири – западный, в Румынии – северо-восточный. В Прикаспии северный ветер называют Иван, а южный – Магомет.

Направление ветра определяется при помощи флюгера 1 (от голл.vleugel – крыло) – одного из старейших метеоприборов. Флюгер состоит из флюгарки и креста румбов. На метеостанциях часто устанавливают флюгер Вильда 2 . Состоит он из металлического флажка, вращающегося вокруг вертикальной оси над крестом румбов, и доски Вильда. В анемографах применяется колесо Салейрона – 2 мельнички, закрепленные на подвижной оси, и стрелка, указывающая направление ветра.

Так же как и для скорости, различают мгновенное и сглаженное направление ветра. Мгновенные направления ветра значительно колеблются около некоторого среднего (сглаженного) направления, которое определяется при наблюдениях по флюгеру. Однако и сглаженное направление ветра в каждом месте Земли непрерывно меняется, в различных местах в одно и то же время оно также различно. В одних местах ветры различных направлений имеют за длительное время почти равную повторяемость, в других – хорошо выраженное преобладание одних направлений ветра над другими в течение всего сезона или года. Это зависит от условий общей циркуляции атмосферы и отчасти от местных топографических условий.

При климатологической обработке наблюдений за ветром можно для каждого данного пункта построить диаграмму, представляющую собой распределение повторяемости направлений ветра по основным румбам, в виде так называемой розы ветров (рисунок 55).

Рисунок 55 – Повторяемость направления ветра в г. Бресте, % (роза ветров)

От начала полярных координат откладываются направления по румбам горизонта(8 или 16) отрезками, длины которых пропорциональны повторяемости ветров данного направления. Концы отрезков можно соединить ломаной линией. Повторяемость штилей указывается числом в центре диаграммы (в начале координат). Если от центра диаграммы отложить отрезки, пропорциональные средней скорости ветра, то получим розу средних скоростей ветра. При построении розы ветров можно учесть одновременно 2 параметра (перемножив повторяемость направлений ветра и среднюю скорость ветра по каждому направлению). Такая диаграмма будет отражать количество воздуха, переносимого ветрами разного направления.

Для представления на климатических картах направление ветра обобщают разными способами:

    можно нанести на карту в разных местах розы ветров;

    можно определить равнодействующую всех скоростей ветра (рассматриваемых как векторы) в данном месте за тот или иной календарный месяц в течение многолетнего периода и затем взять направление этой равнодействующей в качестве среднего направления ветра;

    наносят преобладающее направление ветра. Для этого определяется квадрат с наибольшей повторяемостью, средняя линия квадрата и есть преобладающее направление.

Ветер как явление природы известен каждому еще с раннего детства. Он радует свежим дуновением в знойный день, гоняет корабли по морю, а может и гнуть деревья, и ломать крыши на домах. Основным характеристиками, которые определяют ветер, являются его скорость и направление.

С научной точки зрения, ветром называется передвижение воздушных масс в горизонтальной плоскости. Такое движение возникает потому, что имеет место разность атмосферного давления и тепла между двумя точками. Воздух передвигается из областей высокого давления в те области, где уровень давления ниже. В результате и возникает ветер.

Характеристики ветра

Для того чтобы охарактеризовать ветер, используют два основных параметра: направление и скорость (силу). Направление определяется стороной горизонта, с которой он дует. Оно может указываться в румбах, в соответствии с 16-румбовой шкалой. Согласно ей, ветер может быть северным, юго-восточным, северо-северо-западным и так далее. может также измеряться в градусах, относительно линии меридиана. По этой шкале север определяется как 0 или 360 градусов, восток - 90 градусов, запад - 270 градусов, а юг - 180 градусов. В свою очередь, измеряют в метрах в секунду или в узлах. Узел равен приблизительно 0,5 километра в час. Сила ветра измеряется также в баллах, в соответствии со шкалой Бофорта.

В соответствии с которой определяется сила ветра

Эта шкала была введена в обращение в 1805 году. А в 1963 году Всемирная метеорологическая ассоциация приняла градацию, которая действует по сей день. В ее рамках 0 баллов соответствует штилю, при котором дым будет подниматься вертикально вверх, а листья на деревьях остаются неподвижными. Сила ветра в 4 балла соответствует умеренному ветру, при котором на поверхности воды образуются небольшие волны, могут колыхаться тонкие ветви и листья на деревьях. 9 баллов соответствуют штормовому ветру, при котором могут гнуться даже большие деревья, срываться черепица с крыш, подниматься высокие волны на море. И максимальная сила ветра в соответствии с этой шкалой, а именно - 12 баллов, приходится на ураган. Это - явление природы, при котором ветер причиняет серьезные разрешения, могут быть обрушены даже капитальные здания.

Использование силы ветра

Сила ветра достаточно широко используется в энергетике как один из восполнимых природных источников. С незапамятных времен человечество использовало этот ресурс. Достаточно вспомнить или парусные суда. Ветряки, с помощью которых ветра преобразуется для дальнейшего использования, широко применяются в тех местах, для которых характерны постоянные сильные ветры. Из различных областей применения такого явления как сила ветра, стоит упомянуть также аэродинамическую трубу.

Ветер - природное явление, которое может приносить удовольствие или разрушения, а также быть полезным для человечества. А конкретное действие его зависит от того, насколько большой окажется сила (или скорость) ветра.

Перемещение воздуха над поверхностью Земли в горизонтальном направлении называетсяветром. Ветер всегда дует из области высокого давления в область низкого. Ветер характеризуется скоростью, силой и направлением .

Скорость ветра измеряется в метрах в секунду и километрах в час. Сила ветра измеряется в баллах (один балл приблизительно равен 2 м/с). Скорость зависит от барического градиента: чем больше барический градиент, тем выше скорость ветра. От скорости зависит сила ветра. Чем больше разность атмосферного давления между соседними участками земной поверхности, тем сильнее ветер.

Различают сглаженную скорость ветра за некоторый небольшой промежуток времени, в течение которого производятся наблюдения, и мгновенную скорость ветра , которая вообще сильно колеблется и временами может быть значительно ниже или выше сглаженной скорости.

У земной поверхности чаще всего приходится иметь дело с ветрами, скорости которых порядка 4-8 м/сек и редко превышают 12-15 м/сек. Но все же в штормах и ураганах умеренных широт скорости могут превышать 30 м/сек, а в отдельных порывах достигать 60 м/сек. В тропических ураганах скорости ветра доходят до 65 м/сек, а отдельные порывы - до 100 м/сек. В маломасштабных вихрях (смерчи, тромбы) возможны скорости и более 100 м/сек. В так называемых струйных течениях в верхней тропосфере и в нижней стратосфере средняя скорость ветра за длительное время и на большой площади может доходить до 70-100 м/сек.

Шкала Бофорта - условная шкала для визуальной оценки силы (скорости) ветра в баллах по его действию на наземные предметы или по волнению на море. Была разработана английским адмиралом Ф. Бофортом в 1806 г. и сначала применялась только им самим. В 1874 г. Постоянный комитет Первого метеорологического конгресса принял шкалу Бофорта для использования в Международной синоптической практике. В последующие годы шкала менялась и уточнялась. Шкалой Бофорта широко пользуются в морской навигации.

Слабый 3.4-5,4 Листья и тонкие ветви деревьев все время колышутся, ветер развевает верхние флаги Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену, изредка образуются маленькие белые барашки
Умеренный 5,5-7,9 Ветер поднимает пыль и бумажки, приводит в движение тонкие ветви деревьев Волны удлиненные, белые барашки видны во многих местах
Свежий 8,0-10,7 Качаются тонкие стволы деревьев, на воде появляются волны с гребнями Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги)
Сильный 10.8-13,8 Качаются толстые ветви деревьев, гудят телеграфные провода Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные плошали (вероятны брызги)
Крепкий 13,9-17,1 Качаются стволы деревьев, идти против ветра трудно Волны громоздятся, гребни срываются, пена ложится полосами по ветру
Очень крепкий 17,2-20,7 Ветер ломает сучья деревьев, идти против ветра очень трудно Умеренно высокие длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра
Шторм 20.8-24,4 Небольшие повреждения; ветер срывает дымовые колпаки и черепицу Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость
Сильный шторм 24.5-28,4 Значительные разрушения строений, деревья вырываются с корнем. На суше бывает редко Очень высокие волны с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая
Жестокий шторм 28,5-32,6 Большие разрушения на значительном пространстве. На суше наблюдается очень редко Исключительно высокие волны. Суда небольшого и среднего размера временами скрываются из вида. Море все покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая
Ураган 32,7 и более Воздух наполнен пеной и брызгами. Море все покрыто полосами пены. Очень плохая видимость

Направление ветра

Нужно хорошо запомнить, что, говоря о направлении ветра, имеют в виду направление, откуда он дует. Указать это направление можно, назвав либо точку горизонта, откуда дует ветер, либо угол, образуемый направлением ветра с меридианом места, т. е. его азимут. В первом случае различают 8 основных румбов горизонта: север, северо-восток, восток, юго-восток, юг, юго-запад, запад, северо-запад - и 8 промежуточных румбов между ними: север-северо-восток, восток-северо-восток, восток-юго-восток, юг-юго-восток, юг-юго-запад, запад-юго-запад, запад-северо-запад, север-северо-запад (рис. 68). 16 румбов, указывающих направление, откуда дует ветер, имеют следующие сокращенные обозначения, русские и международные:

Если направление ветра характеризуется углом его с меридианом, то отсчет ведется от севера по часовой стрелке. Таким образом, северу будет соответствовать 0° (360°), северо-востоку 45°, востоку 90°, югу 180°, западу 270°. При наблюдениях над ветром в высоких слоях атмосферы направление его, как правило, указывается в градусах, а при наблюдениях на наземных метеорологических станциях - в румбах горизонта.

Направление ветра определяется с помощью флюгера, вращающегося около вертикальной оси. Под действием ветра флюгер принимает положение по направлению ветра. Флюгер обычно соединяется с доской Вильда.

На климатической карте господствующие ветры показаны стрелками.Поверхность суши и воды нагревается по-разному. В летний день поверхность суши нагревается сильнее. От нагревания воздух над сушей расширяется и становится легче. Над водоемом в это время воздух холоднее и, следовательно, тяжелее. Если водоем сравнительно большой, в тихий жаркий летний день на берегу можно почувствовать легкий ветерок, дующий с воды, над которой атмосферное давление выше, чем над сушей. Такой легкий ветерок называют дневнымбризом . Ночной бриз, наоборот, дует с суши, так как вода охлаждается гораздо медленнее и воздух над ней теплее. Бризы могут возникать и на опушке леса.

Местные ветры могут возникать не только на побережье, но и в горах.

Фён - теплый и сухой ветер, дующий с гор в долину.

Бора - порывистый, холодный и сильный ветер, появляющийся, когда холодный воздух переваливает через невысокие хребты к теплому морю.

Сезонные ветры -муссоны - меняют свое направление два раза в год. Летом суша быстро прогревается, и давление воздуха над ее поверхностью падает. В это время более прохладный воздух начинает перемещаться на сушу. Зимой - все наоборот, поэтому муссон дует с суши на море. Со сменой зимнего муссона на летний происходит смена сухой малооблачной погоды на дождливую. Действие муссонов сильно проявляется в восточных частях материков, где с ними соседствуют огромные пространства океанов, поэтому такие ветры часто приносят на материки обильные осадки. Неодинаковый характер циркуляции атмосферы в разных районах земного шара определяет различия в причинах и характере муссонов. В результате различают внетропические и тропические муссоны.

Внетропические муссоны - муссоны умеренных и полярных широт. Они образуются в результате сезонных колебаний давления над морем и сушей. Наиболее типичная зона их распространения - Дальний Восток, Северо-Восточный Китай, Корея, в меньшей степени - Япония и северо-восточное побережье Евразии.

Тропические муссоны - муссоны тропических широт. Они обусловлены сезонными различиями в нагревании и охлаждении Северного и Южного полушарий. В результате зоны давления смещаются по сезонам относительно экватора в то полушарие, в котором в данное время лето. Тропические муссоны наиболее типичны и устойчивы в северной части бассейна Индийского океана. Этому в немалой мере способствует сезонная смена режима атмосферного давления над Азиатским материком. С южноазиатскими муссонами связаны коренные особенности климата этого региона.

Образование тропических муссонов в других районах земного шара происходит менее характерно, когда более четко выражается один из них - зимний или летний муссон. Такие муссоны отмечаются в Тропической Африке, в северной Австралии и в приэкваториальных районах Южной Америки.

Постоянные ветры Земли -пассаты изападные ветры - зависят от положения поясов атмосферного давления. Так как в экваториальном поясе преобладает низкое давление, а близ 30° с. ш. и ю. ш. - высокое, у поверхности Земли в течение всего года ветры дуют от тридцатых широт к экватору. Это пассаты. Под влиянием вращения Земли вокруг оси пассаты отклоняются в Северном полушарии к западу и дуют с северо-востока на юго-запад, а в Южном они направлены с юго-востока на северо-запад.

От поясов высокого давления (25-30° с. ш. и ю. ш.) ветры дуют не только к экватору, но и в сторону полюсов, так как у 65° с. ш. и ю. ш. преобладает низкое давление. Однако вследствие вращения Земли они постепенно отклоняются к востоку и создают воздушные потоки, перемещающиеся с запада на восток. Поэтому в умеренных широтах преобладают западные ветры.

Роза ветров (в большинстве языков она называется «Роза компаса»), - векторная диаграмма, характеризующая в метеорологии иклиматологии режим ветра в данном месте по многолетним наблюдениям и выглядит как многоугольник, у которого длины лучей, расходящихся от центра диаграммы в разных направлениях (румбах горизонта), пропорциональны повторяемости ветров этих направлений («откуда» дует ветер). Розу ветров учитывают при строительстве взлётно-посадочных полос аэродромов, автомобильных дорог, планировке населенных мест (целесообразной ориентации зданий и улиц), оценке взаимного расположения жилмассива и промзоны (с точки зрения направления переноса примесей от промзоны) и множества других хозяйственных задач (агрономия, лесное и парковое хозяйство, экология и др.).

Роза ветров, построенная по реальным данным наблюдений, позволяет по длине лучей построенного многоугольника выявить направление господствующего , или преобладающего ветра, со стороны которого чаще всего приходит воздушный поток в данную местность. Поэтому настоящая роза ветров, построенная на основании ряда наблюдений, может иметь существенные различия длин разных лучей.

ля того чтобы определить господствующее направление ветра, необходимо построить «розу» ветров. Для построения «розы» ветровпо направлению и повторяемости проводят из одной точки прямые по направлению восьми румбов и на каждой из них откладывают столько единиц, сколько раз в этом направлении за отдельный промежуток времени дул ветер, концы отрезков соединяют прямыми.

Воздушные массы и фронты.

В тропосфере выделяют относительно однородные по температуре, влажности и другим параметрам крупные объемы воздуха - воздушные массы . Протяженность их достигает тысяч километров, вертикальная мощность - вплоть до верхней границы тропосферы. Воздушные массы бывают местные (малоподвижные) идвижущиеся . Последние по отношению к подстилающей поверхности делят на теплые воздушные массы (приходят на более холодную подстилающую поверхность) и холодные воздушные массы (надвигаются на более теплую поверхность). Взаимодействие воздушных масс, их перемещение - определяет погоду.

В зависимости от районов формирования выделяют четыре зональных типа воздушных масс:

- экваториальный - формируется в экваториальной зоне, перемещаясь в северное и южное полушария. И над морем, и над сушей всегда имеет высокую температуру и влажность; поэтому на морской и континентальный не подразделяется. При переходе с океана на более нагретую сушу из экваториального воздуха выпадают тропические дожди. За пределы тропиков экваториальный воздух (ЭВ) не распространяется.

- тропический - воздушная масса, круглый год формирующаяся в тропиках и субтропиках, а летом над сушей на юге умеренных широт (юг Европы, Казахстан, Средняя Азия, Забайкалье и др.). Обычно ТВ вторгается из низких широт в более высокие, вызывая резкое повышение температуры-оттепели зимой и жаркую погоду летом. Морской ТВ отличается высокой влажностью и температурой, континентальный- запыленностью и более высокой температурой.

- полярный - воздух умеренных широт. Название не совсем точное и сохраняется, скорее, по традиции. Очаги ПВ располагаются в средних и субполярных, т. е. во внетропических, широтах обоих полушарий. Он также бывает континентальным и морским. Зимой континентальный ПВ сильно охлажден. Он отличается небольшим содержанием влаги. С вторжением континентального ПВ устанавливается ясная, морозная погода. Летом он сильно нагрет. Морской ПВ обычно формируется над океанами; он влажный, умеренной температуры; зимой приносит оттепели; летом-пасмурную погоду и похолодание.

- арктический (антарктический) - формируется над ледяной поверхностью полярных стран; характеризуется низкими температурами, малым содержанием влаги, небольшим количеством пыли, большой прозрачностью. Вторгаясь в низкие широты, этот воздух значительно понижает температуры. Он может проникнуть далеко от области своего возникновения, задерживаясь только горными цепями. По своим свойствам АВ подразделяется на континентальный и морской. От континентального морской воздух отличается повышенным содержанием влаги.

Они различаются прежде всего по температуре. Все типы, кроме экваториального, делятся на подтипы : морской и континентальный в зависимости от характера поверхности, над которой формируется воздух.

Воздушные массы обычно находятся в постоянном движении. На их контакте образуются обширные переходные зоны - атмосферные фронты , ширина их (500-900 км) намного меньше длины (2-3 тыс. км). Плоскость раздела между воздушными массами, всегда наклоненная в сторону холодного воздуха, называется фронтальной поверхностью. Линия пересечения фронтальной поверхности с поверхностью Земли называется линией фронта, или просто фронтом (атмосферным фронтом). Чаще всего одна из воздушных масс оказывается более активной, а фронт движущимся.

Атмосферные фронты бывают стационарные и движущиеся.

Если воздушные течения направляются с обеих сторон вдоль линии фронта и она не перемещается заметно ни в сторону теплого, ни в сторону холодного воздуха, то фронт называется стационарным .

Движущийся фронт образуется в том случае, если одна из воздушных масс имеет составляющую скорости, перпендикулярную линии фронта. В зависимости от направления перемещения движущиеся фронты подразделяют на теплые и холодные . Теплый фронт образуется при наступлении теплого воздуха на холодный. Линия фронта при этом перемещается в сторону холодного воздуха. После прохождения теплого фронта наступает потепление. Холодный фронт образуется при подтекании холодного воздуха под теплый. При этом линия фронта перемещается в сторону теплого воздуха, который вытесняется наверх. После прохождения холодного фронта наступает похолодание. Различают холодные фронты первого и второго рода . Холодный фронт первого рода образуется в случае медленного наступания холодного воздуха. При этом теплый воздух спокойно поднимается по фронтальной поверхности и линия фронта движется медленно. Холодный фронт второго рода возникает при быстром движении холодного воздуха и резком подтекании его под теплый воздух, который подбрасывается вверх. Фронтальная поверхность при этом круто поднимается над земной поверхностью из-за того, что приземные слои воздуха тормозятся трением. Линия фронта движется быстро

На фронтах из теплого воздуха развиваются подвижные фронтальные циклоны -огромные восходящие вихри, а из холодного воздуха антициклоны - огромные нисходящие вихри. С циклонами связаны облачность, осадки, понижение температуры летом, повышение зимой. С антициклонами - ясная, сухая погода, жаркая летом, морозная зимой. В целом при прохождении атмосферных фронтов происходят резкие изменения погоды: перепады температуры, давления, выпадение осадков, усиление и резкая смена направления ветров и др. В формировании климата нашей страны, расположенной большей частью в умеренных широтах, фронтальной деятельности принадлежит существенная роль, поэтому погода обычно неустойчивая, особенно в зимнее время.

Фронты имеют большое значение для погоды, так как вблизи них образуются облака и часто выпадают осадки В местах встречи теплого и холодного воздуха зарождаются и развиваются циклоны, погода становится не стойкою. Зная расположение атмосферных фронтов, направления и скорости их передвижения, а также имея метеорологические данные, характеризующие воздушные массы, составляют прогнозы погоды.

На климатических картах выделяются зоны, где, по средним многолетним данным, чаще встречаются воздушные массы различных типов и подтипов и где наиболее активно образуются атмосферные фронты. Такие статистически устойчивые фронтальные зоны называются климатическими фронтами. В этих зонах больших горизонтальных контрастов температуры, давления и сильных ветров концентрируются большие запасы энергии, которые расходуются на образование циклонов и антициклонов. Таким образом, эти зоны отражают среднее многолетнее наиболее типичное положение серий подвижных атмосферных фронтов.

Среди климатических фронтов выделяют главные и вторичные фронты.

Главные фронты являются зонами раздела и взаимодействия основных типов воздушных масс, контрастных прежде всего по температуре. Между арктическим (антарктическим) и полярным (умеренных широт) воздухом они называются соответственно арктическим и антарктическим фронтами, между полярным и тропическим воздухом –полярным фронтом. Раздел между теплыми воздушными массами – относительно сухой тропической и влажной экваториальной, – считавшийся ранее тропическим фронтом, представляет собой зону сходимости пассатов северного и южного полушарий и называется в настоящее время внутритропической зоной конвергенции .

Особенности главных фронтов таковы . Во-первых, они прослеживаются вверх до самой стратосферы, часто вызывая образование так называемых струйных течений – очень сильных ветров, которые достигают наибольшей величины близ тропопаузы. Во-вторых, они не образуют на Земле сплошных полос, а разрываются на отдельные ветви (отрезки), которые носят собственные названия. Особенно это заметно на примере полярного фронта, который разделяется на целый ряд ветвей. В-третьих, эти ветви смещаются по сезонам вслед за Солнцем: летом фронты вместе с возникающими на них сериями циклонов мигрируют в сторону полюсов, зимой – к экватору, причем некоторые из них в определенные сезоны размываются.

Концы полярных фронтов, проникающих далеко в глубь тропиков, называются пассатными фронтами. Они разделяют в тропиках уже не полярный и тропический воздух, а различные по свойствам массы тропического воздуха, приносимого из разных океанических субтропических максимумов ветрами, называемыми пассатами. Вторичные фронты (фронты второго порядка) образуются обычно между воздушными массами разных подтипов одного и того же географического типа. Они часто возникают между морским и континентальным полярным воздухом, прежде всего зимой, когда температурная разница между ними достигает наибольших значений. Такой полярный фронт намечается над центром Восточно-Европейской равнины, в связи с чем Москву образно называют «прифронтовым» городом. Вторичные фронты прослеживаются на меньшую высоту, чем главные, – на несколько километров в пределах тропосферы.



Вверх