Структурная единица мышечной ткани. Тема: мышечные ткани

Мышечные ткани представляют собой группу тканей различного происхождения и строения, объединенных на основании общего признака - выраженной сократительной способности, благодаря которой они могут выполнять свою основную функцию - перемещать тело или его части в пространстве.

Важнейшие свойства мышечных тканей. Структурные элементы мышечных тканей (клетки, волокна) обладают удлиненной формой и способны к сокращению благодаря мощному развитию сократительного аппарата. Для последнего характерно высокоупорядоченное расположение актиновых и миозиновых миофиламентов, создающее оптимальные условия для их взаимодействия. Это достигается связью сократимых структур с особыми элементами цитоскелета и плазмолеммой (сарколеммой), выполняющими опорную функцию. В части мышечных тканей миофиламенты образуют органеллы специального значения - миофибриллы. Для мышечного сокращения требуется значительное количество энергии, поэтому в структурных элементах мышечных тканей имеется большое количество митохондрий и трофических включений (липидных капель, гранул гликогена), содержащих субстраты - источники энергии. Поскольку мышечное сокращение протекает с участием ионов кальция, в мышечных клетках и волокнах хорошо развиты структуры, осуществляющие его накопление и выделение - агранулярная эндоплазматическая сеть (саркоплазматическая сеть), кавеолы.

Классификация мышечных тканей основана на признаках их (а) строения и функции (морфофункциональная классификация) и (б) происхождения (гистогенетическая классификация).

Морфофункциональная классификация мышечных тканей выделяет поперечнополосатые (исчерченные) мышечные ткани и гладкую мышечную ткань. Поперечнополосатые мышечные ткани образованы структурными элементами (клетками, волокнами), которые обладают поперечной исчерченностью вследствие особого упорядоченного взаиморасположения в них актиновых и миозиновых миофиламентов. К поперечнополосатым мышечным тканям относят скелетную и сердечную мышечную ткани. Гладкая мышечная ткань состоит из клеток, не обладающих поперечной исчерченностью. Наиболее распространенным видом этой ткани является гладкая мышечная ткань, входящая в состав стенки различных органов (бронхов, желудка, кишки, матки, маточной трубы, мочеточника, мочевого пузыря и сосудов).

Гистогенетическая классификация мышечных тканей выделяет три основных типа мышечных тканей: соматический (скелетная мышечная ткань), целомический (сердечная мышечная ткань) и мезенхимный (гладкая мышечная ткань внутренних органов), а также два дополнительных: миоэпителиальные клетки (видоизмененные эпителиальные сократимые клетки в концевых отделах и мелких выводных протоках некоторых желез) и мионейральные элементы (сократимые клетки нейрального происхождения в радужке глаза).

Скелетная поперечнополосатая (исчерченная) мышечная ткань по своей массе превышает любую другую ткань организма и является самой распространенной мышечной тканью тела человека. Она обеспечивает перемещение тела и его частей в пространстве и поддержание позы (входит в состав локомоторного аппарата), образует глазодвигательные мышцы, мышцы стенки полости рта, языка, глотки, гортани. Аналогичное строение имеет нескелетная висцеральная исчерченная мышечная ткань, которая обнаруживается в верхней трети пищевода, входит в состав наружных анального и уретрального сфинктеров.

Скелетная поперечнополосатая мышечная ткань развивается в эмбриональном периоде из миотомов сомитов, дающих начало активно делящимся миобластам - клеткам, которые располагаются цепочками и сливаются друг с другом в области концов с образованием мышечных трубочек (миотубул) , превращающихся в мышечные волокна. Такие структуры, образованные единой гигантской цитоплазмой и многочисленными ядрами, в отечественной литературе традиционно именуют симпластами (в данном случае - миосимпластами), однако этот термин отсутствует в принятой международной терминологии. Некоторые миобласты не сливаются с другими, располагаясь на поверхности волокон и давая начало миосателлитоцитам - мелким клеткам, которые являются камбиальными элементами скелетной мышечной ткани. Скелетная мышечная ткань образована собранными в пучки поперечнополосатыми мышечными волокнами (рис. 87), являющимися ее структурно-функциональными единицами.

Мышечные волокна скелетной мышечной ткани представляют собой цилиндрические образования вариабельной длины (от миллиметров до 10-30 см). Их диаметр также широко варьирует в зависимости от принадлежности к определенной мышце и типу, функционального состояния, степени функциональной нагрузки, состояния питания

и других факторов. В мышцах мышечные волокна образуют пучки, в которых они лежат параллельно и, деформируя друг друга, часто приобретают неправильную многогранную форму, что особенно хорошо видно на поперечных срезах (см. рис. 87). Между мышечными волокнами располагаются тонкие прослойки рыхлой волокнистой соединительной ткани, несущие сосуды и нервы - эндомизий. Поперечная исчерченность скелетных мышечных волокон обусловлена чередованием темных анизотропных дисков (полос А) и светлых изотропных дисков (полос I). Каждый изотропный диск рассекается надвое тонкой темной линией Z - телофрагмой (рис. 88). Ядра мышечного волокна - сравнительно светлые, с 1-2 ядрышками, диплоидные, овальные, уплощенные - лежат на его периферии под сарколеммой и располагаются вдоль волокна. Снаружи сарколемма покрыта толстой базальной мембраной, в которую вплетаются ретикулярные волокна.

Миосателлитоциты (клетки-миосателлиты) - мелкие уплощенные клетки, располагающиеся в неглубоких вдавлениях сарколеммы мышечного волокна и покрытые общей базальной мембраной (см. рис. 88). Ядро миосателлитоцита - плотное, относительно крупное, органеллы мелкие и немногочисленные. Эти клетки активируются при повреждении мышечных волокон и обеспечивают их репаративную регенерацию. Сливаясь с остальной частью волокна при усиленной нагрузке, миосателлитоциты участвуют в его гипертрофии.

Миофибриллы образуют сократительный аппарат мышечного волокна, располагаются в саркоплазме по ее длине, занимая центральную часть, и отчетливо выявляются на поперечных срезах волокон в виде мелких точек (см. рис. 87 и 88).

Миофибриллы обладают собственной поперечной исчерченностью, причем в мышечном волокне они располагаются столь упорядоченно, что изотропные и анизотропные диски разных миофибрилл совпадают между собой, обусловливая поперечную исчерченность всего волокна. Каждая миофибрилла образована тысячами повторяющихся последовательно связанных между собой структур - саркомеров.

Саркомер (миомер) является структурно-функциональной единицей миофибриллы и представляет собой ее участок, расположенный между двумя телофрагмами (линиями Z). Он включает анизотропный диск и две половины изотропных дисков - по одной половине с каждой стороны (рис. 89). Саркомер образован упорядоченной системой толстых (миозиновых) и тонких (актиновьх) миофиламентов. Толстые миофиламенты связаны с мезофрагмой (линией М) и сосредоточены в анизотропном диске,

а тонкие миофиламенты прикреплены к телофрагмам (линиям Z), образуют изотропные диски и частично проникают в анизотропный диск между толстыми нитями вплоть до светлой полосы Н в центре анизотропного диска.

Механизм мышечного сокращения описывается теорией скользящих нитей, согласно которой укорочение каждого саркомера (а, следовательно, миофибрилл и всего мышечного волокна) при сокращении происходит благодаря тому, что в результате взаимодействия актина и миозина в присутствии кальция и АТФ тонкие нити вдвигаются в промежутки между толстыми без изменения их длины. При этом ширина анизотропных дисков не меняется, а ширина изотропных дисков и полос Н - уменьшается. Строгая пространственная упорядоченность взаимодействия множества толстых и тонких миофиламентов в саркомере определяется наличием сложно организованного поддерживающего аппарата, к которому, в частности, относятся телофрагма и мезофрагма. Кальций выделяется из саркоплазматической сети, элементы которой оплетают каждую миофибриллу, после поступления сигнала с сарколеммы по Т-трубочкам (совокупность этих элементов описывается как саркотубулярная система).

Скелетная мышца как орган состоит из пучков мышечных волокон, связанных воедино системой соединительнотканных компонентов (рис. 90). Снаружи мышцу покрывает эпимизий - тонкий, прочный и гладкий чехол из плотной волокнистой соединительной ткани, отдающий вглубь органа более тонкие соединительнотканные перегородки - перимизий, который окружает пучки мышечных волокон. От перимизия внутрь пучков мышечных волокон отходят тончайшие прослойки рыхлой волокнистой соединительной ткани, окружающие каждое мышечное волокно - эндомизий.

Типы мышечных волокон в скелетной мышце - разновидности мышечных волокон с определенными структурными, биохимическими и функцио нальными различиями. Типирование мышечных волокон производится на препаратах при постановке гистохимических реакций выявления ферментов - например, АТФазы, лактатдегидрогеназы (ЛДГ), сукцинатдегидрогеназы (СДГ) (рис. 91) и др. В обобщенном виде можно условно выделить три основных типа мышечных волокон, между которыми существуют переходные варианты.

Тип I (красные) - медленные, тонические, устойчивые к утомлению, с небольшой силой сокращения, окислительные. Характеризуются малым диаметром, относительно тонкими миофибриллами,

высокой активностью окислительных ферментов (например, СДГ), низкой активностью гликолитических ферментов и миозиновой АТФазы, преобладанием аэробных процессов, высоким содержанием пигмента миоглобина (определяющим их красный цвет), крупных митохондрий и липидных включений, богатым кровоснабжением. Численно преобладают в мышцах, выполняющих длительные тонические нагрузки.

Тип IIВ (белые) - быстрые, тетанические, легко утомляющиеся, с большой силой сокращения, гликолитические. Характеризуются большим диаметром, крупными и сильными миофибриллами, высокой активностью гликолитических ферментов (например, ЛДГ) и АТФазы, низкой активностью окислительных ферментов, преобладанием анаэробных процессов, относительно низким содержанием мелких митохондрий, липидов и миоглобина (определяющим их светлый цвет), значительным количеством гликогена, сравнительно слабым кровоснабжением. Преобладают в мышцах, выполняющих быстрые движения, например, мышцах конечностей.

Тип IIА (промежуточные) - быстрые, устойчивые к утомлению, с большой силой, оксилительно-гликолитические. На препаратах напоминают волокна типа I. В равной степени способны использовать энергию, получаемую путем окислительных и гликолитических реакций. По своим морфологическим и функциональным характеристикам занимают положение, промежуточное между волокнами типа I и IIB.

Скелетные мышцы человека являются смешанными, т. е. содержат волокна различных типов, которые распределены в них мозаично (см. рис. 91).

Сердечная поперечнополосатая (исчерченная) мышечная ткань встречается в мышечной оболочке сердца (миокарде) и устьях связанных с ним крупных сосудов. Основным функциональным свойством сердечной мышечной ткани служит способность к спонтанным ритмическим сокращениям, на активность которых влияют гормоны и нервная система. Эта ткань обеспечивает сокращения сердца, которые поддерживают циркуляцию крови в организме. Источником развития сердечной мышечной ткани служит миоэпикардиальная пластинка висцерального листка спланхнотома (целомическая выстилка в шейной части эмбриона). Клетки этой пластинки (миобласты) активно размножаются и постепенно превращаются в сердечные мышечные клетки - кардиомиоциты (сердечные миоциты). Выстраиваясь в цепочки, кардиомиоциты формируют сложные межклеточные соединения - вставочные диски, связывающие их в сердечные мышечные волокна.

Зрелая сердечная мышечная ткань образована клетками - кардиомиоцитами, связанными друг с другом в области вставочных дисков и образующими трехмерную сеть ветвящихся и анастомозирующих сердечных мышечных волокон (рис. 92).

Кардиомиоциты (сердечные миоциты) - цилиндрические или ветвящиеся клетки, более крупные в желудочках. В предсердиях они обычно имеют неправильную форму и меньшие размеры. Эти клетки содержат одно или два ядра и саркоплазму, покрыты сарколеммой, которая снаружи окружена базальной мембраной. Их ядра - светлые, с преобладанием эухроматина, хорошо заметными ядрышками - занимают в клетке центральное положение. У взрослого человека значительная часть кардиомиоцитов - полиплоидные, более половины - двуядерные. Саркоплазма кардиомиоцитов содержит многочисленные органеллы и включения, в частности, мощный сократительный аппарат, который сильно развит в сократительных (рабочих) кардиомиоцитах (в особенности, в желудочковых). Сократительный аппарат представлен сердечными исчерченными миофибриллами, по строению сходными с миофибриллами волокон скелетной мышечной ткани (см. рис. 94); в совокупности они обусловливают поперечную исчерченность кардиомиоцитов.

Между миофибриллами у полюсов ядра и под сарколеммой располагаются очень многочисленные и крупные митохондрии (см. рис. 93 и 94). Миофибриллы окружены элементами саркоплазматической сети, связанными с Т-трубочками (см. рис. 94). Цитоплазма кардиомиоцитов содержит кислородсвязывающий пигмент миоглобина и скопления энергетических субстратов в виде липидных капель и гранул гликогена (см. рис. 94).

Типы кардиомиоцитов в сердечной мышечной ткани различаются структурными и функциональными признаками, биологической ролью и топографией. Выделяют три основных типа кардиомиоцитов (см. рис. 93):

1) сократительные (рабочие) кардиомиоциты образуют основную часть миокарда и характеризуются мощно развитым сократительным аппаратом, занимающим бjльшую часть их саркоплазмы;

2) проводящие кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы, пучки и волокна проводящей системы сердца и разделяются на несколько подтипов. Характеризуются слабым развитием сократительного аппарата, светлой саркоплазмой и крупными ядрами. В проводящих сердечных волокнах (Пуркинье) эти клетки имеют крупные размеры (см. рис. 93).

3) секреторные (эндокринные) кардиомиоциты располагаются в предсердиях (в особенности, пра-

вом) и характеризуются отростчатой формой и слабым развитием сократительного аппарата. В их саркоплазме вблизи полюсов ядра находятся окруженные мембраной плотные гранулы, содержащие предсердный натриуретический пептид (гормон, вызывающий потерю натрия и воды с мочой, расширение сосудов, снижение артериального давления).

Вставочные диски осуществляют связь кардиомиоцитов друг с другом. Под световым микроскопом они имеют вид поперечных прямых или зигзагообразных полосок, пересекающих сердечное мышечное волокно (см. рис. 92). Под электронным микроскопом определяется сложная организация вставочного диска, представляющего собой комплекс межклеточных соединений нескольких типов (см. рис. 94). В области поперечных (ориентированных перпендикулярно расположению миофибрилл) участков вставочного диска соседние кардиомиоциты образуют многочисленные интердигитации, связанные контактами типа десмосом и адгезивных фасций. Актиновые филаменты прикрепляются к поперечным участкам сарколеммы вставочного диска на уровне линии Z. На сарколемме продольных участков вставочного диска имеются многочисленные щелевые соединения (нексусы), обеспечивающие ионную связь кардиомиоцитов и передачу импульса сокращения.

Гладкая мышечная ткань входит в состав стенки полых (трубчатых) внутренних органов - бронхов, желудка, кишки, матки, маточных труб, мочеточников, мочевого пузыря (висцеральная гладкая мышечная ткань), а также сосудов (васкулярная гладкая мышечная ткань). Гладкая мышечная ткань встречается также в коже, где она образует мышцы, поднимающие волос, в капсулах и трабекулах некоторых органов (селезенка, яичко). Благодаря сократительной активности этой ткани обеспечивается деятельность органов пищеварительного тракта, регуляция дыхания, крово- и лимфотока, выделение мочи, транспорт половых клеток и др. Источником развития гладкой мышечной ткани у эмбриона является мезенхима. Свойствами гладких миоцитов обладают также некоторые клетки, имеющие другое происхождение - миоэпителиальные клетки (видоизмененные сократительные эпителиальные клетки в некоторых железах) и мионейральные клетки радужки глаза (развиваются из нейрального зачатка). Структурно-функциональной единицей гладкой мышечной ткани служит гладкий миоцит (гладкая мышечная клетка).

Гладкие миоциты (гладкие мышечные клетки) - вытянутые клетки преимущественно вере-

теновидной формы, не обладающие поперечной исчерченностью и образующие многочисленные соединения друг с другом (рис. 95-97). Сарколемма каждого гладкого миоцита окружена базальной мембраной, в которую вплетаются тонкие ретикулярные, коллагеновые и эластические волокна. Гладкие миоциты содержат одно удлиненное диплоидное ядро с преобладанием эухроматина и 1-2 ядрышками, расположенное в центральной утолщенной части клетки. В саркоплазме гладких миоцитов умеренно развитые органеллы общего значения располагаются вместе с включениями в конусовидных участках у полюсов ядра. Периферическая ее часть занята сократительным аппаратом - актиновыми и миозиновыми миофиламентами, которые в гладких миоцитах не формируют миофибрилл. Актиновые миофиламенты прикрепляются в саркоплазме к овальным или веретеновидным плотным тельцам (см. рис. 97) - структурам, гомологичным линиям Z в поперечнополосатых тканях; сходные образования, связанные с внутренней поверхностью сарколеммы, называют плотными пластинками.

Сокращение гладких миоцитов обеспечивается взаимодействием миофиламентов и развивается в соответствии с моделью скользящих нитей. Как и в поперечнополосатых мышечных тканях, сокращение гладких миоцитов индуцируется притоком Са2+ в саркоплазму, который в этих клетках выделяется саркоплазматической сетью и кавеолами - многочисленными колбовидными впячиваниями поверхности сарколеммы. Благодаря выраженной синтетической активности гладкие миоциты продуцируют и выделяют (подобно фибробластам) коллагены, эластин и компоненты аморфного вещества. Они способны также синтезировать и секретировать ряд факторов роста и цитокинов.

Гладкая мышечная ткань в органах обычно представлена пластами, пучками и слоями гладких миоцитов (см. рис. 95), внутри которых клетки связаны интердигитациями, адгезивными и щелевыми соединениями. Расположение гладких миоцитов в пластах таково, что узкая часть одной клетки прилежит к широкой части другой. Это способствует наиболее компактной укладке миоцитов, обеспечению максимальной площади их взаимных контактов и высокой прочности ткани. В связи с описанным расположением гладких мышечных клеток в пласте на поперечных срезах соседствуют сечения миоцитов, разрезанных в широкой части и в области узкого края (см. рис. 95).

МЫШЕЧНЫЕ ТКАНИ

Рис. 87. Скелетная поперечнополосатая мышечная ткань

1 - мышечное волокно: 1.1 - сарколемма, покрытая базальной мембраной, 1.2 - саркоплазма, 1.2.1 - миофибриллы, 1.2.2 - поля миофибрилл (Конгейма); 1.3 - ядра мышечного волокна; 2 - эндомизий; 3 - прослойки рыхлой волокнистой соединительной ткани между пучками мышечных волокон: 3.1 - кровеносные сосуды, 3.2 - жировые клетки


Рис. 88. Скелетное мышечное волокно (схема):

1 - базальная мембрана; 2 - сарколемма; 3 - миосателлитоцит; 4 - ядро миосимпласта; 5 - изотропный диск: 5.1 - телофрагма; 6 - анизотропный диск; 7 - миофибриллы


Рис. 89. Участок миофибриллы волокна скелетной мышечной ткани (саркомер)

Рисунок с ЭМФ

1 - изотропный диск: 1.1 - тонкие (актиновые) миофиламенты, 1.2 - телофрагма; 2 - анизотропный диск: 2.1 - толстые (миозиновые) миофиламенты, 2.2 - мезофрагма, 2.3 - полоса Н; 3 - саркомер


Рис. 90. Скелетная мышца (поперечный срез)

Окраска: гематоксилин-эозин

1 - эпимизий; 2 - перимизий: 2.1 - кровеносные сосуды; 3 - пучки мышечных волокон: 3.1 - мышечные волокна, 3.2 - эндомизий: 3.2.1 - кровеносные сосуды

Рис. 91. Типы мышечных волокон (поперечный срез скелетной мышцы)

Гистохимическая реакция выявления сукцинатдегидрогеназы (СДГ)

1 - волокна I типа (красные волокна) - с высокой активностью СДГ (медленные, окислительные, устойчивые к утомлению); 2 - волокна IIВ типа (белые волокна) - с низкой активностью СДГ (быстрые, гликолитические, утомляемые); 3 - волокна IIА типа (промежуточные волокна) - с умеренной активностью СДГ (быстрые, окислительно-гликолитические, устойчивые к утомлению)


Рис. 92. Сердечная поперечнополосатая мышечная ткань

Окраска: железный гематоксилин

А - продольный срез; Б - поперечный срез:

1 - кардиомиоциты (образуют сердечные мышечные волокна): 1.1 - сарколемма, 1.2 - саркоплазма, 1.2.1 - миофибриллы, 1.3 - ядро; 2 - вставочные диски; 3 - анастомозы между волокнами; 4 - рыхлая волокнистая соединительная ткань: 4.1 - кровеносные сосуды

Рис. 93. Ультраструктурная организация кардиомиоцитов различных типов

Рисунки с ЭМФ

A - сократительный (рабочий) кардиомиоцит желудочка сердца:

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии, 3.3 - липидные капли; 4 - ядро; 5 - вставочный диск.

Б - кардиомиоцит проводящей системы сердца (из субэндокардиальной сети волокон Пуркинье):

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии; 3.3 - гранулы гликогена, 3.4 - промежуточные филаменты; 4 - ядра; 5 - вставочный диск.

В - эндокринный кардиомиоцит из предсердия:

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.2 - митохондрии, 3.3 - секреторные гранулы; 4 - ядро; 5 - вставочный диск

Рис. 94. Ультраструктурная организация области вставочного диска между соседними кардиомиоцитами

Рисунок с ЭМФ

1 - базальная мембрана; 2 - сарколемма; 3 - саркоплазма: 3.1 - миофибриллы, 3.1.1 - саркомер, 3.1.2 - изотропный диск, 3.1.3 - анизотропный диск, 3.1.4 - светлая полоса Н, 3.1.5 - телофрагма, 3.1.6 - мезофрагма, 3.2 - митохондрии, 3.3 - Т-трубочки, 3.4 - элементы саркоплазматической сети, 3.5 - липидные капли, 3.6 - гранулы гликогена; 4 - вставочный диск: 4.1 - интердигитации, 4.2 - адгезивная фасция, 4.3 - десмосома, 4.4 - щелевое соединение (нексус)


Рис. 95. Гладкая мышечная ткань

Окраска: гематоксилин-эозин

А - продольный срез; Б - поперечный срез:

1 - гладкие миоциты: 1.1 - сарколемма, 1.2 - саркоплазма, 1.3 - ядро; 2 - прослойки рыхлой волокнистой соединительной ткани между пучками гладких миоцитов: 2.1 - кровеносные сосуды


Рис. 96. Изолированные гладкие мышечные клетки

Окраска: гематоксилин

1 - ядро; 2 - саркоплазма; 3 - сарколемма


Рис. 97. Ультраструктурная организация гладкого миоцита (участок клетки)

Рисунок с ЭМФ

1 - сарколемма; 2 - саркоплазма: 2.1 - митохондрии, 2.2 - плотные тельца; 3 - ядро; 4 - базальная мембрана

Мышечные ткани (textus musculares) представляют группу разных по происхождению тканей животных и человека, обладающих общим свойством - сократимостью. Это свойство осуществляется этими тканями благодаря наличию в них специальных сократительных структур - миофиламентов Различают следующие основные виды мышечных тканей:

гладкую (неисчерченную) мышечную ткань и поперечнополосатые (исчерченные) мышечные ткани. Последние, в свою очередь, подразделяют на скелетную мышечную ткань и сердечную мышечную ткань. Свойством сократимости обладают также некоторые специализированные разновидности других тканей. К ним относят так называемую эпителиально-мышечную ткань (в потовых и слюнных железах) и нейроглиальную мышечную ткань (в радужной оболочке глаза) (таблица 9).

Гладкая (неисчерченная) мышечная ткань

Гладкая мышечная ткань (textus muscularis nonstriatus) развивается из мезенхимы. Она составляет двигательный аппарат внутренних органов, кровеносных и лимфатических сосудов. Ее сокращения имеют медленный, тонический характер. Структурной единицей гладкой мышечной ткани является клетка удлиненной веретенообразной формы - гладкий миоцит. Она покрыта плазмолеммой, к которой снаружи примыкает базальная мембрана и соединительнотканные волокна. Внутри клетки в ее центре, в миоплазме имеется вытянутой формы ядро, вокруг которого расположены митохондрии и другие органеллы.

В миоплазме миоцитов под электронным микроскопом обнаружены сократительные белковые нити - миофиламенты. Различают миофиламенты актиновые, миозиновые и промежуточные. Актиновые н миозиновые миофиламенты обеспечивают сам акт сокращения, а промежуточные предохраняют гладкие миоциты отих избыточного расширения при укорочении. Миофиламенты гладких миоцитов не образуют дисков, поэтому эти клетки не имеют поперечной исчерченности, и получили название гладких, неисчерченных. Гладкие миоциты хорошо регенерируют. Они делятся митозом, могут развиваться из малодифференцированных соединительнотканных клеток, способны к гипертрофии. Между клетками располагается опорная строма гладкой мышечной ткани - коллагеновые и эластические волокна, образующие плотные сети вокруг каждой клетки. Гладкие мышечные клетки синтезируют сами волокна этой стромы.

Поперечнополосатые (исчерченные) мышечные ткани

Как уже было сказано, в эту группу поперечнополосатых мышечных тканей включают скелетную и сердечную мышечные ткани. Эти ткани объединяют прежде всего по признаку поперечной исчерченности их специальных органелл - миофибрилл. Однако по своему происхождению, общему плану строения н функциональным особенностям, эти два вида поперечнополосатых мышечных тканей существенно отличаются.

Поперечнополосатая скелетная мышечная ткань

Скелетная мышечная ткань (textus muscularis striatus sceletalis) развивается из сегментированной мезодермы, точнее из ее центральных участков, получивших название миотомов. Структурно-функциональной единицей этой ткани являются многоядерные миосимпласты -поперечнополосатые мышечные волокна. С поверхности они покрыты сарколеммой - сложным образованием, состоящим из трехслойной плазмолеммы мышечного волокна, базальной мембраны и прилежащей к ней снаружи сети соединительнотканных волокон. Под базальной мембраной, прилегая к плазмолемме мышечного волокна, располагаются особые мышечные клетки - сателлиты. Внутри мышечного волокна, в его саркоплазме, по периферии, расположены многочисленные ядра, а в центре, вдоль волокна, находятся специальные органеллы - миофибриллы. Митохондрии н другие общие органеллы в мышечном волокне расположены вокруг ядер и вдоль миофибрилл. Под электронным микроскопом миофибриллы состоят из нитей - миофиламентов - актниовых, более тон ких (диаметром около 5-7 нм) и более толстых -миозиновых (диаметром около 10-20 нм).

Актиновые миофиламенты, содержащие белок актин, образуют изотропные диски (I). Это светлые, не обладающие двойным лучепреломлением диски. В центре дисковI проходитZ-линия - телофрагма. Эта линия делит дискI на два полудиска. В области Z-линий расположены так называемые триады. Триады состоят из трубчатых элементов - Т-трубочек, образованных вдавлением плазмолеммы внутрь мышечного волокна. По этим трубочкам нервный импульс поступает к миофибриллам. В каждой триаде одна Т-трубочка контактирует с двумя терминальными цистернами саркоплазматической сети, что обеспечивает выброс ионов кальция, необходимых для сократительного акта. В области Z-линий дискаI сходятся концы актиновых миофиламентов. Миозиновые миофиламенты, содержащие белок миозин, образуют анизотропные (А) темные диски, обладающие двойным лучепреломлением. В центре диска А проходит М-линия - мезофрагма. В М-линни сходятся концы миозиновых миофибрилл и обнаружена сеть канальцев саркоплазматической сети. Чередование в миофибриллах темных и светлых дисков придает мышечному волокну поперечную исчерченность. Структурной единицей миофибрилл является миомер (саркомер) - это участок миофибриллы между двумя Z-линиями. Его формула - А+2 1 / 2 I .

По современным представлениям в каждом мышечном волокне различают: сократительный аппарат, состоящий из мнофибрилл, включающих актиновые и миозиновые миофиламенты; трофический аппарат, в который входит саркоплазма с ядрами и органеллами; специальный мембранный аппарат триад; опорный аппарат, включающий сарколемму с эндомизием и мембранными структурами линий Z и М; и, наконец, нервный аппарат, представленный двигательными нервно-мышечными окончаниями - моторными бляшками и чувствительными нервными окончаниями - нервно-мышечными веретенами.

В скелетной мышечной ткани различают белые и красные мышечные волокна. Белые мышечные волокна содержат мало саркоплазмы и миоглобина и много мнофибрилл. На поперечном срезе в белых мышечных волокнах хорошо видны плотно расположенные миофибриллы. Они обеспечивают сильное, но непродолжительное сокращение. Красные мышечные волокна содержат много саркоплазмы и, следовательно, много миоглобина и мало миофибрилл. На поперечном срезе в таких мышечных волокнах миофибриллы расположены рыхло в виде групп, образуя многоугольники, получившие название полей Конгейма. Эти поля разделены друг от друг прослойками саркоплазмы. Красные мышечные волокна содержат много митохондрий, они способны к длительному сокращению. В каждой скелетной мышце, как органе, имеются и белые, и красные мышечные волокна. Однако их соотношение в разных мышечных группах неодинаково.

Каждое мышечное волокно окружено снаружи прослойкой рыхлой волокнистой соединительной ткани, получившей название эндомизия (endomysium). Группы мышечных волокон окружены перимизием (perimysium), а сама мышца - плотной соединительнотканной оболочкой -эпимизием (epimysium).

Поперечнополосатая скелетная мышечная ткань способна к регенерации. Сокращение мышечной ткани трактуется с позиции теории скольжения: актиновые миофиламенты вдвигаются, скользит между миозиновыми.

Сердечная мышечная ткань

Сердечная мышечная ткань (textus muscularis cardiacus) - это поперечнополосатая (исчерченная) мышечная ткань. Однако она имеет ряд существенных в своем строении отличий от скелетной мышечкой ткани. Развивается эта ткань из висцерального листка мезодермы, точнее, из так называемой миоэпикардиальной пластинки. Структурной единицей сердечной мышечной ткани являются поперечнополосатые клетки -сердечные миоциты или кардиомиоциты (miocyti cardiaci) с одним или двумя ядрами, расположенными в центре. По периферии цитоплазмы в кардиомиоцитах расположены миофибриллы, имеющие такое же строение, как и в скелетном мышечном волокне. Вокруг ядра и вдоль миофибрилл располагается большое количество митохоидрий (саркосом). Кардиомиоциты отделены друг от друга вставочными дисками (disci intercalati), образованными десмосомами и щелевыми контактами. Кардиомиоциты посредством этих дисков объединяются конец в конец в сердечные мышечные волокна, анастомозирующие между собой и сокращающиеся как единое целое. В сердечной мышечной ткани различают кардиомиоциты, - сократительные или типичные и проводящие или атипичные, составляющие проводящую систему сердца. Проводящие кардиомиоциты более крупные, содержат меньше миофибрилл и митохондрий. Их ядра часто расположены эксцентрично.

1. Виды мышечной ткани Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5-7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани , которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма.
Мышечные ткани неодинаковы по строению , источникам происхождения и иннервации , по функциональным особенностям . Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна .
Классификация мышечных тканей:

  • гладкая (неисчерченная) - мезенхимная;
  • специальная - нейрального происхождения и эпидермального происхождения;
  • поперечно-полосатая (исчерченная ):
  • скелетная;
  • сердечная.
Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы - гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям.
Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы.
К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.
Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются нетолько из мезодермы, но из разных ее частей:
  • скелетная - из миотомов сомитов;
  • сердечная - из висцерального листка спланхнотома.
Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка - миоцит; специальной мышечной ткани эпидермального происхождения - корзинчатый миоэпителиоцит ; сердечной мышечной ткани - кардиомиоцит; скелетной мышечной ткани - мышечное волокно.

2. Организация поперечно-полосатой скелетной мышечной ткани Структурно-функциональной единицей поперечно полосатой мышечной ткани является мышечное волокно . Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 мм до 40 мм (а по некоторым данным до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой - сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний - является типичной плазмолеммой, а наружный представляет собой тонкую соединительнотканную пластинку - базальную пластинку. В узкой щели между плазмолеммой и базальной пластинкой располагаются мелкие клетки - миосателлиты. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:

  • миосимпласта;
  • клеток миосателлитов;
  • базальной пластинки.
Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительнотканные элементы мышцы.
Клетки миосателлиты являются камбиальными (ростковыми) элементами мышечных волокон и играют роль в процессах их физиологической и репаративной регенерации.
Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток - миобластов. Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. В миосимпласте содержится несколько тысяч (до 10 000) продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабовыраженной зернистой эндоплазматической сети, пластинчатого комплекса и небольшое число митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме содержатся включения гликогена и миоглобина, аналога гемоглобина эритроцитов.
Отличительной особенностью миосимпласта является также наличие в нем специализированных органелл, к которым относятся :
  • миофибриллы;
  • саркоплазматическая сеть;
  • канальцы Т-системы.
Миофибриллы - сократительные элементы миосимпласта - в большом количестве (до 1000-2000) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое число митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2-0,5 мкм.
По своему строению миофибриллы неоднородны по протяжению и подразделяются на:
  • темные (анизотропные) или А-диски , которые образованы более толстыми миофиламентами (10-12 нм), состоящими из белка миозина;
  • и светлые (изотропные) или I-диски , которые образованы тонкими миофиламентами (5-7 нм), состоящими из белка актина.
Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких волоконец - протофибрилл или миофиламентов . Посредине I-диска поперечно актиновым миофиламентам проходит темная полоска - телофрагма или Z-линия, посредине А-диска проходит менее выраженная М-линия или мезофрагма. Актиновые миофиламенты по средине I-диска скрепляются белками, составляющими Z-линию, свободными концами частично входит в А-диск между толстыми миофиламентами. При этом, вокруг одного миозинового филамента располагаются 6 актиновых. При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск и в нем образуется светлая зона или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.
Участок миофибриллы, расположенный между двумя Z-линиями носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляется процесс сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта актиновыми миофиламентами. Структурные элементы саркомера в расслабленном состоянии можно выразить формулой :
Z+1/2I+1/2A+M+1/2A+1/2I+Z.

3. Мышечные сокращения Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актин-миозиновых мостиков , посредством которых происходит втягивание актиновых миофиламентов в А-диски укорочение саркомера. Для развития этого процесса необходимы три условия:

  • наличие энергии в виде АТФ;
  • наличие ионов кальция;
  • наличие биопотенциала.
АТФ образуется в саркосомах (митохондриях) в большом числе локализованных между миофибриллами. Выполнение двух последних условий осуществляется с помощью еще двух специализированных органелл - саркоплазматической сети и Т-канальцев .
Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн , соединенных полыми анастомозирующими канальцами - L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-дисков, а канальцы - в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети, выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы. Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.
Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам , которые не являются самостоятельными структурными элементами.
Они представляют собой трубчатые выпячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на одном уровне, обычно на уровне Z-полоски или несколько медиальнее - в области соединения актиновых и миозиновых миофиламентов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обуславливает выход из них ионов кальция и начало сокращения. Таким образом, функциональная роль Т-канальцев заключается в передаче биопотенциала с плазмолеммы на саркоплазматическую сеть.
Для взаимодействия актиновых и миозиновых миофиламентов и последующего сокращения кроме ионов кальция необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.
Процесс взаимодействия актиновых и миозиновых филаментов упрощенно можно представить в следующем виде. Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ, с образованием АДФ и энергии. Благодаря выделившейся энергии устанавливаются мостики между актином и миозином (а конкретнее, образуются мостики между головками белка миозина и определенными точками на актиновом филаменте) и за счет укорочения этих мостиков происходит подтягивание актиновых филаментов между миозиновыми. Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предидущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ. После смерти организма АТФ в саркосомах не образуется, ее остатки расходуются на образование актин-миозиновых мостиков, а на распад уже не хватает, следствием чего наступает посмертное окоченение мышц, которое прекращается после аутолиза(распада) тканевых элементов.
При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоски и I-диски, а формула саркомера может быть выражена в следующем виде:
Z+1/2IA+M+1/2AI+Z.
При частичном сокращении формулу саркомера можно представить в следующем виде:
Z+1/nI+1/nIA+1/2H+M+1/2H+1/nAJ+1/nI+Z.
Одновременное содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом, на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в углубления складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров. Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых мышечных волокон, вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.

4. Типы мышечных волокон В мышечной ткани различают два основных типа мышечных вол окон , между которыми имеются промежуточные, отличающиеся между собой, прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени - структурными особенностями.

  • Волокна I типа - красные мышечные волокна - характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что и придает им красный цвет), большим числом саркосом, высокой активностью в них сукцинатдегидрогеназы (СДГ), высокой активностью АТФ-азы медленного типа. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью;
  • Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-базы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различными сочетаниями названных включений и разной активностью перечисленных ферментов.
Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов и нервов. Мышца - это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань . Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.
Волокнистая соединительная ткань образует прослойки в мышце:
  • эндомизий;
  • перимизий;
  • эпимизий;
  • а также сухожилия.
Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна. Коллагеновые и ретикулярные волокна эндомизия проникают в базальную пластинку мышечного волокна, тесно с ним связаны и передают силы сокращения волокна на точки скелета.
Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артериоло-венулярные анастомозы).
Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы, как органа. Любая мышца содержит все типы мышечных волокон в различном количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные волокна. В мышцах, обеспечивающих движение пальцев и кистей, преобладают белые или переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации. Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое и наоборот приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.

Цели занятия. Научиться:

1.Определять на светооптическом уровне исчерченную, неисчер-ченную(гладкую),сердечную мышечные ткани.

2.Узнавать и анализировать отличия разных видов мышечной ткани.

3.Анализировать на электронно-оптическом уровне структуру мышечного волокна, гладкой мышечной клетки, кардиомиоцитов.

1.Что является источником формирования исчерченной мускулатуры органов опоры и движения?

2. Каково функциональное назначение скелетных мышц?

3. Принципы работы мышц.

4.Строение скелетной мышцы как органа.

5.Из каких мышц построены стенки полых внутренних органов?

Имея разное происхождение и строение, мышечные ткани объединяет способность к сокращению. Сократительный аппарат занимает значительную часть в цитоплазме, в его составе присутствуют актиновые и миозиновые филаменты, которые формируют органеллы специального значения–миофибриллы.

По морфофункциональному признаку различают:

· Скелетную или поперечно-полосатую или исчерченную мышечную ткань . Начало и прикрепление мышц находится на скелете. Мышцы являются произвольными, поскольку их сокращения подчиняются нашей воле. К этой группе мышц относят скелетные мышцы, мышцы языка, гортани и др.

· Сердечная мышечная ткань входит в состав мышечной стенки сердца. Иннервируется вегетативными нервами, является непроизвольной.

· Гладкая (неисчерченная) мышечная ткань характеризуется отсутствием исчерченности, а поскольку сокращения также не подчиняются нашей воле, то мышцы называют непроизвольными. Иннервация осуществляется вегетативной нервной системой. Из гладких мышц построены стенки внутренних органов, стенка сосудов.

В зависимости от источников развития выделяют пять типов мышечной ткани:

1. Мезенхимного происхождения (гладкая мышечная ткань).

2.Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки (например, в потовых, слюнных железах).

3.Нейральное происхождение (из нервной трубки)–мышцы суживающие и расширяющие зрачок.

4.Целомическое происхождение (миоэпикардиальная пластинка) – сердечная мышечная ткань.

5. Из миотомов мезодермы– исчерченная мышечная ткань.

Исчерченная (поперечно-полосатая) мышечная ткань Источником развития являются клетки миотомов миобласты. Различают головные, шейные, грудные, поясничные, крестцовые миотомы. Они разрастаются в дорзальном и вентральном направлениях. В них рано врастают ветви спинномозговых нервов.

Часть миобластов дифференцируется на месте (образуют аутохтонную мускулатуру), а другие, с 3 недели внутриутробного развития мигрируют в мезенхиму и сливаясь, друг с другом образуют мышечные трубки (миотубы) с крупными центрально ориентированными ядрами. В миотубах происходит дифференцировка специальных органелл миофибрилл. Первоначально они располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра смещаются к периферии. Клеточные центры и микротрубочки исчезают. Гранулярная ЭПС значительно редуцируется. Такая многоядерная структура называется симпласт, а для мышечной ткани - миосимпласт.

Часть миобластов дифференцируется в миосателлитоциты, которые располагаются на поверхности миосимпластов и принимают участие в регенерации мышечной ткани.

Структурной единицей мышечной ткани является мышечное волокно , состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной (рис.21). Длина мышечных волокон колеблется от 1 до 40 мм, а толщина 0,1 мм.

В мышечном волокне различают мембранный аппарат, фибриллярный (сократительный) аппарат, трофический аппарат (ядро, саркоплазма, цитоплазматические органеллы).

Мембранный аппарат . Каждое мышечное волокно покрыто сарколеммой, где различают наружную базальную мембрану и плазмолемму (под базальной мембраной), плазмолемма образует впячивания (Т- трубочки).

К плазмолемме снаружи прилежат миосателлитоциты. При повреждении базальной мембраны запускается митотический цикл миосателлитоцитов.

Фибриллярный аппарат .Исчерченные волокна можно разделить на составляющие их фибриллы (диаметром 1 мкм), названные миофибриллами. В мышечном волокне они ориентированы продольно.

При рассматривании мышечных волокон и миофибрилл под световым микроскопом, отмечается чередование в них темных и светлых участков – дисков. Темные диски отличаются двойным лучепреломлением и называются анизотропными дисками или А- дисками. Светлые диски не обладают двойным лучепреломлением и называются изотропными или I – дисками. В средней части диска А имеется более светлый участок Н-зона (участок содержащий только толстые нити белка миозина). В области Н-зоны выделяется более темная М-линия, состоящая из миомезина (необходим для сборки толстых нитей и их фиксации при сокращении). В середине диска I расположена плотная линия Z, которая построена из белковых фибриллярных молекул. В частности, большую роль играет альфа актинин. Z – линия соединена с соседними миофибриллами с помощью белка десмина и поэтому все названные линии и диски соседних миофибрилл совпадают и создается картина поперечно-полосатой исчерченности мышечного волокна.

Структурной единицей миофибриллы является саркомер (S) - это пучок миофиламентов заключенный между двумя Z линиями (рис.22). Принимая во внимание вышеуказанные обозначения можно структуру саркомера записать в виде формулы:

S= Z 1 + 1/2 I 1 + А + 1/2 I 2 + Z 2

Под электронным микроскопом миофибриллы представляют агрегаты из толстых (меозиновых) филаментов (диаметр 14 нм, длина 1500 нм, расстояние между ними 20-30 нм). Между толстыми филаментами располагаются тонкие филаменты (диаметр 7-8 нм).

Толстые филаменты (миозиновые нити) состоят из молекул белка миозина. Он является важнейшим сократительным белком мышцы. При непосредственном участии миозина химическая энергия трансформируется в механическую работу. Каждая миозиновая нить состоит из 300-400 молекул миозина. Молекула миозина – это гексамер, состоящий из двух тяжелых и четырех легких цепей. Тяжелые цепи представляют собой две спирально закрученные полипептидные нити. Они несут на своих концах глобулярные (шаровидные) головки. Между головкой и тяжелой цепью – шарнирный участок, с помощью которого головка может изменять свою конфигурацию. В области головок - легкие цепи (по две на каждой). Молекулы миозина уложены в толстой нити таким образом, что их головки обращены наружу, выступая над поверхностью толстой нити, а тяжелые цепи образуют стержень толстой нити.

Тяжелые и легкие цепи в молекуле миозина можно разделить обработкой мочевиной, гуанидинхлоридом и др. При мягкой обработке можно отделить только легкие цепи. Миозину свойственна АТФ-азная активность – высвобождающаяся энергия используется для мышечного сокращения.

Тонкие нити (актиновые нити). Образованы тремя белками: актином, тропонином и тропомиозином. Основным по массе белком является актин, который образует спираль. Молекулы тропомиозина располагаются в желобке этой спирали, молекулы тропонина располагаются вдоль спирали.

Толстые нити занимают центральную часть саркомера–А-диск, тонкие занимают I диски и частично входят между толстыми миофиламентами. Только толстые нити содержит Н-зона.

При поступлении нервных импульсов по аксонам двигательных нейронов происходит сокращение мышечного волокна . Каждое мышечное волокно имеет собственный аппарат иннервации (моторная бляшка) и окружено сетью гемокапилляров, располагающихся в прилежащей рыхлой соединительной ткани. Этот комплекс называется мион. Группа мышечных волокон, которые иннервируются одним мотонейроном называется нервно-мышечной единицей. Мышечные волокна в этом случае могут располагаться не рядом (одно нервное окончание может контролировать от одного до десятков мышечных волокон).

В покое взаимодействие тонких и толстых нитей (миофиламентов) невозможно, т.к. миозин-связывающие участки актина заблокированы тропомиозином. При высокой концентрации ионов кальция конформационные (пространственные) изменения тропомиозина приводят к разблокированию миозин-связывающих участков молекул актина. Плазмолемма миосимпласта образует пальцевидные впячивания (инвагинации) ориентированные поперечно по отношению к миосимпласту называемые Т-трубочки. К каждой Т-трубочке примыкают по две цистерны саркоплазматического ретикулума (гладкая ЭПС), образуя триаду: две цистерны и одна Т-трубочка. Са 2+ концентрируется в цистернах (там его концентрация в 800 раз больше, чем в саркоплазме).

Механизм сокращения.При поступлении нервного импульса волна деполяризации доходит до цистерн саркоплазматического ретикулума, из них выделяются ионы кальция и концентрация кальция в саркоплазме резко возрастает. Са 2+ диффундирует к тонким нитям (филаментам) саркомера, где связывается с тропонином и миозиновыми головками. Это приводит:

1.К изменению конформации (пространственного расположения) тропомиозина, что, в свою очередь, приводит к освобождению участков актина, необходимых для взаимодействия с миозиновыми головками.

2.Появлению АТФ-азной активности миозина.

3.Взаимодействию миозиновых головок с актином (актино- миозиновые «мостики»).

Все это вместе взятое приводит к тому, что миозиновые головки «шагают» по актину, образуя в ходе перемещения новые связи актина и миозина, сближая две Z-линии. При сокращении уменьшаются только светлые диски.

Расслабление. Са 2+ -АТФ-аза саркоплазматического ретикулума закачивает Са 2+ из саркоплазмы в цистерны. В саркоплазме концентрация Са 2+ становится низкой. Са 2+ -тропомиозин закрывает миозин-связывающие участки тонких нитей и препятствует их взаимодействию с миозином.

Чувствительная иннервация (нервно-мышечные веретена). Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют нервно-мышечные веретена, являющиеся рецепторами скелетной мышцы. Снаружи сформирована капсула веретена. При сокращении поперечно-полосатых (исчерченных) мышечных волокон изменяется натяжение соединительно-тканной капсулы веретена и соответственно изменяется тонус интрафузальных (расположенных под капсулой) мышечных волокон. Формируется нервный импульс.

Классификация и типы мышечных волокон. Скелетные мышцы, состоящие из мышечных волокон отличаются по многим параметрам: цвету, диаметру, утомляемости, скорости сокращения и т.д. В каждой мышце присутствуют разные типы мышечных волокон. В исчерченных мышцах различают два вида мышечных волокон: экстрафузальные, которые преобладают и обуславливают собственно сократительную функцию мышцы и интрафузальные, входящие в состав проприоцепторов–нервно-мышечных веретен.

По характеру сокращения мышечные волокона делят на фазные и тонические . Фазные способны осуществлять быстрые сокращения, но не могут длительно удерживать достигнутый уровень укорочения. Тонические –обеспечивают поддержание статического напряжения или тонуса.

По биохимическим особенностям и цвету выделяют красные и белые мышечные волокна . Цвет мышцы обусловлен степенью васкуляризации. Кроме того, существует прямая корреляция между содержанием миоглобина и цветом мышцы. Характерной особенностью красных мышечных волокон является наличие многочисленных митохондрий, цепи которых располагаются между миофибриллами. В белых мышечных волокнах митохондрий меньше и они располагаются равномерно в саркоплазме мышечного волокна.

Скорость сокращения определяется типом миозина . Высокую скорость сокращения обеспечивает быстрый миозин (для него характерна высокая активность АТФ-азы); меньшая скорость сокращения характерна для медленного миозина (характерна невысокая активность АТФ-азы). Следовательно, по активности АТФ-азы можно судить и о наборе миозинов.

Тип окислительного обмена . Мышечные волокна используют два пути образования АТФ:

* при анаэробном типе метаболизма из 1 молекулы глюкозы образуется 2 молекулы АТФ и молочная кислота.

* при аэробном окислении из 1 молекулы глюкозы образуется 38 молекул АТФ и конечные продукты метаболизма: СО 2 и Н 2 О. Идентификация мышечных волокон основана на выявлении активности фермента сукцинатдегидрогеназы (СДГ), которая является маркером для митохондрий и цикла Кребса. Активность этого фермента свидетельствует о напряженности энергетического метаболизма. Выделяют мышечные волокна А-типа (гликолитические) с низкой активностью СДГ, С-тип (оксидативные) с высокой активностью СДГ. Мышечные волокна В-типа занимают промежуточное положение. Переход мышечных волоко от А-типа в С-тип маркирует изменения от анаеробного гликолиза к метаболизму, зависящему от кислорода.

Существует много и других классификаций.

Факторами, определяющими структуру и функцию скелетной мышцы являются влияние нервной ткани, гормональное влияние, уровень васкуляризации, уровень двигательной активности и местоположение мышцы.

Сердечная мышечная ткань находится в мышечной оболочке сердца (миокард) и в устьях связанных с ним крупных сосудов. Имеет клеточный тип строения и основным функциональным свойством служит способность к спонтанным ритмическим сокращениям.

Развивается из миоэпикардиальной пластинки (висцеральный листок спланхнотома в шейном отделе), клетки которой размножаются митозом а потом дифференцируются. В клетках появляются миофиламенты, которые далее формируют миофибриллы.

Сердечная мышечная ткань образована клетками, которые называются кардиомиоциты. Между ними расположена рыхлая соединительная ткань и кровеносные сосуды с помощью вставочных дисков. Кардиомиоциты обьединяются в мышечные «волокна». Продольные и боковые связи кардиомиоцитов обеспечивают функциональное единство миокарда. Последние являются комплексом контактов. На поперечном срезе вставочных дисков выявляют десмосомы и щелевидные контакты (нексусы).

Выделяют рабочие (сократительные) кардиомиоциты , которые образуют цепочки клеток и обеспечивают силу сокращения сердечной мышцы. Клетки удлиненной формы с центрально расположенным ядром (рис.23). Вблизи ядра (или двух) комплекс Гольджи и гранулы гликогена. Между миофибриллами лежат многочисленные митохондрии. Имеются Т-трубочки и L-трубочки. Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствует передаче сокращения от одного кардиомиоцита к другому.

Проводящие (атипичные) кардиомиоциты –среди них различают: 1.Водители ритма–это клетки небольших размеров, в саркоплазме мало гликогена, мало миофибрилл и они расположены по периферии. Клетки имеют хорошее кровоснабжение и иннервацию. Они воспринимают сигналы от нервных окончаний и способны автоматически генерировать сигналы обеспечивающие ритмические сокращения сердца.

2.Проводящие (переходные) кардиомиоциты проводят возбуждение от водителя ритма. Образуют длинные волокна. Миофибриллы в небольшом количестве, имеют спиральный ход, мелкие митохондрии, немного гликогена.

3.Волокна Пуркинье–являются самыми крупными клетками в мышечной ткани сердца с неупорядоченным расположением миофибрилл, множеством мелких митохондрий, много гликогена, нет Т-трубочек, клетки связаны между собой десмосомами и щелевидными контактами.

Секреторные кардиомиоциты – находятся в, основном, в предсердиях, преимущественно в правом. Характеризуются отростчатой формой и слабым развитием сократительного аппарата. В саркоплазме, вблизи полюсов ядра-секреторные гранулы, содержащие атриопептин (гормон, регулирующий артериальное давление). Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Сократительный аппарат рабочих кардиомиоцитов сходен со скелетными мышечными волокнами. Миофибриллы в кардиомиоците могут объединяться в комплексы, образуя единые сократительные структуры. В саркоплазме миофибриллы ориентированы продольно и располагаются преимущественно по периферии. Саркотубулярная система вцелом имеет сходство с исчерченными мышечными волокнами. Саркоплазматическая сеть развита слабее, не так активно накапливает Са 2. . При расслаблении, ионы кальция выделяются в саркоплазму с низкой скоростью, что обеспечивает автоматизм и частые сокращения кардиомиоцитов. Т-трубочки широкие и образуют диады (одна Т-трубочка и одна цистерна сети), которые сходятся в области Z-линии. Энергетический аппарат-это митохондрии и включения.

Неисчерченная (гладкая) мышечная ткань. Структурно-функциональной единицей данной ткани являются гладкие мышечные клетки (ГМК), которые способны к гипертрофии и регенерации. Они образуют стенки внутренних полых органов, сосудов. Более крупные по размерам ГМК характерны для стенок полых внутренних органов, а меньших размеров–для стенки сосудов. Клетки контролируют моторику, величину просвета. Имеют веретенообразную форму, в центре палочковидной формы ядро. В ГМК отсутствует поперечно-полосатая исчерченность. ГМК окружены сарколеммой, которая снаружи покрыта базальной мембраной. Длина от 20 мкм до 1 мм. В саркоплазме у полюсов находится комплекс Гольджи, много митохондрий, рибосом, развит саркоплазматический ретикулум. Миофиламенты расположены вдоль продольной оси. В ГМК актиновые и миозиновые филаменты не формируют миофибрилл. Актиновые нити (тонкие филаменты) ориентированы по продольной оси ГМК. По количеству их больше и они прикрепляются к плотным тельцам, которые являются специальными сшивающими белками. Рядом с актиновыми нитями располагаются мономеры миозина (микромиозин). Обладая разной длиной они, значительно короче тонких нитей.

Сокращение гладких мышечных клеток осуществляется при взаимодействии актиновых филаментов и миозина. Сигнал идущий по нервным волокнам обуславливает выделение медиатора, что изменяет состояние сарколеммы. Она образует колбовидные впячивания (кавеолы), где концентрируются ионы кальция. Сокращение ГМК индуцируется притоком ионов кальция в саркоплазму (кавеолы отшнуровываются и вместе с ионами кальция попадают в саркоплазму). Это приводит к полимеризации миозина и взаимодействию его с актином. Актиновые нити и плотные тельца сближаются, усилие передается на сарколемму и ГМК укорачивается. Миозин ГМК способен взаимодействовать с актином только после фосфорилирования его легких цепей особым ферментом–киназой легких цепей. После прекращения сигнала ионы кальция покидают кавеолы; миозин деполяризуется, теряет сродство к актину. В результате комплексы миофиламентов распадаются; сокращение прекращается.

Особые типы гладких мышечных клеток. Миоэпителиальные клетки являются производными эктодермы, не имеют исчерченности. Окружают секреторные отделы и выводные протоки желез (слюнных, молочных, слезных). С железистыми клетками они связаны десмосомами. Сокращаясь, способствуют выделению секрета. В концевых (секреторных) отделах форма клеток отросчатая, звездчатая. Ядро в центре, в цитоплазме, преимущественно в отростках локализованы миофиламенты, которые образуют сократительный аппарат. В этих клетках есть и цитокератиновые промежуточные филаменты, что подчеркивает их сходство с эпителиоцитами.

Мионейральные клетки развиваются из клеток наружного слоя глазного бокала и образуют мышцу, суживающую зрачок и мышцу, расширяющую зрачок. По строению первая мышца сходна с ГМК мезенхимного происхождения. Мышца, расширяющая зрачок образована отростками клеток, располагающимися радиально, а ядросодержащая часть клетки находится между пигментным эпителием и стромой радужки.

Миофибробласты относятся к рыхлой соединительной ткани и представляют собой видоизмененные фибробласты. Они проявляют свойства как фибробластов, так и ГМК (обладают выраженными сократительными свойствами). Как вариант этих клеток можно рассматривать миоидные клетки в составе стенки извитого семенного канальца яичка и наружного слоя теки фолликула яичника. При заживлении раны часть фибробластов синтезирует гладкомышечные актины и миозины.

Эндокринные гладкие миоциты –это видоизмененные ГМК, представляющие основной компонент юкста-гломерулярного аппарата почек. Они находятся в стенке артериол почечного тельца, имеют хорошо развитый синтетический аппарат и редуцированный сократительный. Продуцируют фермент ренин, находящийся в гранулах и попадающий в кровь механизмом экзоцитоза.

Вопросы для самоконтроля :

1.Как классифицируются мышечные ткани по морфо-функциональному признаку? по происхождению?

2.Что является структурно-функциональной единицей мышечной ткани?

3.Строение фибриллярного аппарата мышечных волокон.

4.Напишите формулу саркомера.

5.Строение мышечных волокон под световым и электронным микроскопом.

6.Механизм сокращения и расслабления мышечного волокна.

7.Как классифицируются мышечные волокна? Типы мышечных волокон?

8.Виды кардиомиоцитов в сердечной мышце, особенности их строения.

9.Строение ГМК.

10.Перечислить особые типы гладких мышечных клеток.

Конец работы -

Эта тема принадлежит разделу:

ОБЩАЯ ГИСТОЛОГИЯ

КАФЕДРА ГИСТОЛОГИИ ЭМБРИОЛОГИИ И ЦИТОЛОГИИ... ОБЩАЯ ГИСТОЛОГИЯ ИЖЕВСК...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:



Вверх