Медная руда и технология добычи чистой меди. Особенности меди: ее состав, структура и технология производства

История получения меди:

Интересна история получения меди. Уже 5-6 тысяч лет до н.э. медная руда добывалась египетскими рабами в Нубии, на Синайском полуострове. Древнейшая медеплавильная печь найдена на Синайском полуострове. По составу шлака установили, что в этой печи выплавлялась медь. Для улучшения литейных свойств меди греки добавляли в руду оловянный камень (двуокись олова) и получали оловянную бронзу.Искусство получения меди и ее сплавов затем перешло к римлянам. Оловянную руду римляне доставали из Англии, которая в то время называлась Касситеридскими островами. Интересно отметить, что минерал - двуокись олова и по настоящее время называется касситеритом.

О методах получения меди в России дает представление небольшой, но обстоятельный труд М.В.Ломоносова “Основание металлургии” (1763 год), который сыграл исключительную роль в развитии металлургического производства. В этой же книги дано описание “сульфатизирующего обжига”. Он заключался в медленном окислении медной сульфидной руды до сульфата меди кислородом воздуха: CuS+2O 2 >CuSO 4 с последующим выщелачиванием соли водой с целью получения медного купороса.

· Получение меди методом электролиза .

Электролиз широко применяют для очистки (рафинирования) меди. Для очистки меди из черновой меди отливают аноды - толстые пластины. Их подвешивают в ванну, содержащую раствор медного купороса. В качестве катодов используют тонкие листы чистой меди, на которые во время электролиза осаждается чистая медь. На аноде происходит растворение меди. Ионы меди передвигаются к катоду, принимают от катода электроны и переходят в атомы: Cu +2 +2e?>Cu. Чистая медь оседает на катоде.

Примеси, входящие в состав черновой меди ведут себя по-разному. Более электроотрицательные элементы - цинк, железо, кадмий и другие растворяются на аноде. Но на катоде эти металлы не выделяются, так как электрохимическом ряду напряжений они находятся левее меди и имеют более отрицательные потенциалы.

  • · Металлотермический метод получения .
  • 3CuO+2Al>Al 2 O 3 +3Cu
  • 3Cu+2Fe>Fe 2 O 3 +3Cu+Q
  • · Пирометаллургический способ получения меди .

Поскольку содержание меди не превышает 1.5-2%, их подвергают обогащению, т.е. отделяют соединения меди от пустой породы, применяя флотационный метод. Для этого руду размалывают до тончайшего порошка и смешивают его с водой, добавив в неё предварительно флоторагенты - сложные органические вещества. Они покрывают мельчайшие крупинки соединений меди и сообщают им несмачиваемость. В воду добавляют ещё вещества, создающие пену. Затем через взвесь пропускают сильный поток воздуха. Поскольку частички (крупинки соединений меди) водой не смачиваются, они прилипают к пузырькам воздуха и всплывают наверх. Всё это происходит во флотационных аппаратах. Пену, которая содержит крупинки соединений меди, собирают, отфильтровывают, отжимают от воды и высушивают. Так получают концентрат, из которого выделяется медь. В зависимости от состава руды существует несколько методов её переработки.

Сульфидную руду сначала обжигают при свободном токе воздуха для удаления части серы: 2CuS+3O 2 . Этот обжиг проводят в механических печах, похожих на устройства для обжига серного колчедана. В последнее время начали применять обжиг в кипящем слое. Продукты обжига затем переплавляют совместно с флюсами в отражательной печи. При этом протекает множество химических процессов, например

2CuO+4CuS>3Cu 2 S+SO 2 .

Пустая порода, часть сульфидов и окислов железа переходит в шлак, а на дне печи скапливается штейн - расплав сульфида меди Cu 2 S и сульфида железа FeS. Штейн сливают из печи и перерабатывают в конвекторе, который по устройству похож на конвектор для переработки стали. Частичное удаление серы происходит за счет продувки воздуха через расплавленный штейн:

2Cu 2 S+3O 2 >2Cu 2 O+2SO 2 .

Сульфид меди и закись меди дают металлическую черновую медь:

Cu 2 S+2Cu 2 O>SO 2 +6Cu

Она содержит около 95-98% меди. При последующей переплавке на поду отражательной печи содержание меди может быть повышено до 99,7%. Дальнейшая очистка меди проводится электролизом.

Более просто перерабатывают окисные руды меди, состоящие из закиси меди, окиси меди и карбонатов меди (Cu 2 O, CuO, CuCO 3 Cu(OH) 2). Эти руды обогащения прокаливают с коксом при высокой температуре:

2CuO+C>CO 2 +2Cu.

Добыча и получение солей меди из природных месторождений.

Около 15% всех руд меди перерабатывается гидрометаллургическим методом - на измельченную руду действуют растворителем, который переводит медь в раствор. На руды, содержащие оксид меди, действуют разбавленной серной кислотой:

CuO+H 2 SO 4 >CuSO 4 +H 2 O

По сравнению со многими другими оксидами, встречающимися в руде, оксид меди растворяется сравнительно хорошо. Выделение металлической меди из раствора проводят электролизом.

Если медь находится в руде в виде сульфида, то ее в раствор можно перевести, обрабатывая ее руду раствором сульфата железа:

CuSO 4 +2Fe 2 SO 4 >4FeSO 4 +2CuSO+S

· Гидрометаллургическом способе получения

Этот способ используют бедные медные руды, которые подвергают выщелачиванию. Для выщелачивания руду желательно мелко раздробить. Процесс ведется в кучах, а также в деревянных и бетонных чанах. Выщелачивания ведется при помощи растворителей H 2 S0 4 , Fe (SO 4) 3 , NH4OH и др.

Легче всего растворяются окисленные медные руды :

CuO + H 2 SO 4 >CuSO 4 + H 2 O

СuСО 3 * Сu(ОН) 2 + 2 Н 2 SO 4 >2СuSO 4 + 3 Н 2 О +СO 2 .

Сернистые соединения меди выщелачиваются сернокислым железом:

Cu 2 S + 2 Fe 2 (SО 4) 3 >2 СuSO 4 + 4 FeSO 4 + S.

При выщелачивании медных руд достигается почти полное извлечение меди, что дает возможность перерабатывать даже к бедные окисленные руды. Полученные растворы солей меди при выщелачивании подвергают дальнейшей обработке с целью извлечения меди. Из бедных цттиоров медь добывают методом цементации. В раствор опускают обрезки железа (листы, проволоку). Железо замещает медь в сернокислых солях и медь выделяется в виде металлического мелкого порошка:

CuSО 4 + Fe>FeSО 4 + Cu.

Цементационная медь содержит до 70% Сu. Растворы, содержащие большое количество сернокислых солей меди, подвергают электролизу с нерастворимыми постоянными анодами. Катодприменяют обычно из чистой электролитной меди. Электролит содержит 40--60 г/л меди, 10--20 г/л H 2 SО 4 .

В металлургии известны два основных способа получения меди: пирометаллургический (плавка) и гидрометаллургический (выщелачивание). Сульфидные руды обогащают методом флотации и полученный концентрат подвергают пирометаллургической переработке, а окисленные руды перерабатывают гидрометаллургическим способом (кучное и подземное выщелачивание).

выплавка штейна (химическое обогащение).

Наиболее целесообразным способом освободится от основного количества пустой породы оказалась плавка медных концентратов с получением 2-х расплавов – штейна , содержащего сульфиды меди и железа (Cu 2 S, FeS) и шлака, состоящего из оксидов SiO 2 , Al 2 O 3 , CaO. Благодаря существенному различию по плотности (у штейна 4,8-5,3, а у шлака – около 2,8-3,2 г/см 3), происходит практически полное разделение штейна и шлака. Возможность концентрации меди в штейне обусловливается следующими обстоятельствами:

1. Медь из всех тяжелых металлов, за исключением марганца, обладает наибольшим сродством к сере. В следствие этого, она в первую очередь связывает серу, независимо от того, в каких соединениях медь находится в руде, при этом образуется химическое соединение Cu 2 S, устойчивое при высоких температурах.

2. Железо, обладая большим сродством к кислороду, чем медь, легко окисляется и шлакуется кремнекислотой.

3. Оставшаяся после связывания всей меди сера соединяется с железом, с которым образует FeS – соединение, устойчивое при высоких температурах.

4. Cu 2 S и FeS легко растворяются одно в другом в любых пропорциях, образуя штейн.

5. Штейн почти не растворяется в силикатных шлаках, что дает возможность разделить отстаиванием расплавленный штейн и шлак.

Для получения хороших результатов плавки “на штейн” требуется определенное содержание в рудном материале серы, соответствующее примерно стехиометрическому соотношению в молекулах Cu 2 S и FeS. Медные концентраты, в которых концентрация серы превышает оптимальную, перед плавкой подвергаются окислительному обжигу для удаления избытка серы.

Обжиг - этопирометаллургический процесс, проводимый в интервале температур 600-1200 о С с целью изменения химического и фазового состава перерабатываемого сырья. В металлургии меди наибольшее распространение получили окислительный и сульфатизирующий виды обжига.

Цель окислительного обжига – частичное удаление из обжигаемых материалов серы и перевод сульфидов железа в легкошлакуемые при последующей плавке оксиды. Предварительный обжиг высокосернистых руд и концентратов позволяет получать при последующей плавке относительно более богатый по содержанию меди штейн.

Сульфатизирующий обжиг применяют в гидрометаллургии меди для перевода извлекаемых металлов в водорастворимые сульфаты, а железа – в нерастворимые в воде оксиды. В общем виде окисление сульфидов при обжиге может быть выражено следующими основными реакциями:


2MeS+3O 2 ->2MeO+2SO 2

MeS+2O 2 ->MeSO 4

MeS+O 2 ->Me+SO 2

Обжиг медных руд и концентратов осуществляется в кипящем слое. Преимущество обжига в кипящем слое заключается в простоте конструкции печей, высокой производительности, возможности эффективного использования отходящих газов для производства серной кислоты, возможности полной автоматизации и механизации процесса.

Принцип обжига в кипящем слое состоит в следующем: если через слой сыпучего материала продувать снизу какой-либо газ, этот слой при определенных параметрах дутья будет разрыхляться до такого состояния, что приобретает основные свойства жидкости – подвижность, способность перемешиваться, принимать форму сосуда в который она помещена.

Вам понадобится

  • - химическая посуда;
  • - оксид меди (II);
  • - цинк;
  • - соляная кислота;
  • - спиртовка;
  • - муфельная печь.

Инструкция

Медь из оксида вы сможете восстановить водородом. Сначала повторите технику безопасности при работе с нагревательными приборами, а так же с кислотами и горючими газами. Напишите уравнения реакций: - взаимодействие и соляной кислоты Zn + 2HCl = ZnCl2 + H2;- восстановление меди водородом CuO + H2 = Cu + H2O.

Прежде чем проводить опыт, подготовьте для него оборудование, так как обе реакции должны идти параллельно. Возьмите два штатива. В одном из них закрепите чистую и сухую пробирку для оксида меди, а в другом - пробирку с газоотводной трубкой, куда положите несколько кусочков цинка. Зажгите спиртовку.

Насыпьте черный порошок меди в приготовленную посуду. Сразу же залейте цинк . Газоотводную трубку направьте на оксид. Помните, что идет только . Поэтому поднесите спиртовки ко дну пробирки с CuO. Все старайтесь делать достаточно быстро, так как цинк с кислотой взаимодействует бурно.

Еще медь можно восстановить . Составьте уравнение реакции:2CuO + C = 2Cu + CO2Возьмите порошок меди(II) и просушите его на огне в открытой фарфоровой чашке (порошок должен быть цвета). Затем насыпьте полученный реактив в фарфоровый тигель и добавьте мелкодисперсный древесный (кокс) из расчета 10 частей CuO к 1 части кокса. Все тщательно разотрите пестиком. Закройте неплотно крышкой, чтобы при реакции улетучивался образующийся углекислый газ, и поместите в муфельную печь с температурой около 1000 градусов по Цельсию.

После того как реакция закончится, тигель охладите, а содержимое залейте водой. После этого перемешайте полученную суспензию, и вы увидите, как частички угля отсоединяются от тяжелых красноватых шариков. Достаньте полученный металл. Позднее, при желании, можете попытаться сплавить в печи меди между собой.

Полезный совет

Прежде чем нагревать дно пробирки с оксидом меди, прогрейте ее целиком. Это поможет избежать трещин на стекле.

Источники:

  • как получить оксид меди
  • Восстановление меди водородом из оксида меди

Медь (Cuprum) является химическим элементом I-ой группы периодической системы Менделеева, имеющим атомный номер 29 и атомную массу 63,546. Чаще всего медь имеет валентность II и I, реже – III и IV. В системе Менделеева медь располагается в четвертом периоде, а также входит в группу IB. Сюда входят такие металлы благородного происхождения, как золото (Au) и серебро (Ag). А теперь мы распишем способы получения меди.

Инструкция

Промышленное получения меди – сложный и многоступенчатый. Добытый металл дробится, а затем очищается от пустой породы посредством использования флотационного метода обогащения. Далее полученный концентрат (20-45% меди) подвергается обжигу в печке с воздушным дутьем. После обжига должен образоваться огарок. Это твердое , которое содержится в примеси многих металлов. Расплавьте огарок в отражательной либо электрической печи. После такой плавки помимо шлака штейн, содержащий в себе 40-50% меди.

Штейн далее подвергается конвертированию. Это значит, что нагретый штейн продувается сжатым и обогащенным воздухом. Добавьте кварцевого флюса (песка SiO2). При конвертировании нежелательный сульфид FeS перейдет в шлак и выделится в форме сернистого газа SO2. Одновременно будет окисляться сульфид одновалентной меди Cu2S. На следующей ступени будет образовываться оксид Cu2O, который вступит в реакцию с сульфидом меди.

В результате всех описанных операций получится черновая медь. Содержание самой меди в ней составляет около 98,5-99,3% по массе. Черновая медь подвергается рафинированию. Этот на первой стадии в оплавлении меди и пропускании через полученный расплав кислорода. Содержащиеся в меди примеси более активных металлов незамедлительно вступают в реакцию с кислородом, переходя тут же в оксидные шлаки.

В заключительной части процесса получения меди она подвергается электрохимическому рафинированию серы. Черновая медь при этом является анодом, а очищенная – катодом. Благодаря такой очистке выпадают в осадок примеси менее активных металлов, которые присутствовали в черновой меди. Примеси более активных металлов вынуждены оставаться в электролите. Стоит отметить, что чистота катодной меди, прошедшей все стадии очистки, достигает 99,9% и даже более.

Медь – широко распространенный металл, который одним из первых был освоен человеком. С давних времен, ввиду своей относительной мягкости, медь использовалась главным образом в виде бронзы – сплава с оловом. Встречается она как в самородках, так и в виде соединений. Представляет собой пластичный металл золотисто-розоватого цвета, на воздухе быстро покрывается окисной пленкой, придающей меди желто-красный оттенок. Как определить, содержится ли медь в том или ином изделии?

Инструкция

Для того чтобы найти медь, можно провести довольно простую качественную реакцию. Для этого настрогайте кусочек металла на стружку. Если вы хотите проанализировать проволоку, ее необходимо нарезать небольшими кусочками.

Затем налейте в пробирку немного концентрированной азотной . Осторожно опустите туда же стружку или куски проволоки. Реакция начинается практически сразу, и требует она большой аккуратности и осторожности. Хорошо, если есть возможность провести эту операцию в вытяжном шкафу или, в крайнем случае, на свежем , поскольку ядовитые , очень вредные для . Их легко , поскольку они бурый цвет - получается так называемый «лисий хвост».

Образовавшийся раствор необходимо выпарить на горелке. Это также очень желательно делать в вытяжном шкафу. В этот момент удаляются не только безопасный водяной пар, но и пары кислоты, и оставшиеся окислы азота. Полностью выпаривать раствор не нужно.

Видео по теме

Обратите внимание

Необходимо помнить, что азотная кислота, а особенно концентрированная – очень едкое вещество, работать с ней надо предельно аккуратно! Лучше всего – в резиновых перчатках и защитных очках.

Полезный совет

Медь обладает высокой тепло- и электропроводностью, низким удельным сопротивлением, уступая в этом отношении только лишь серебру. Благодаря чему этот металл находит широкое применение в электротехнике для изготовления силовых кабелей, проводов, печатных плат. Сплавы на основе меди применяются также в машиностроении, судостроении, военном деле, ювелирной промышленности.

Источники:

  • где можно найти медь в 2019

Сегодня металлы используются повсеместно. Их роль в промышленном производстве трудно переоценить. Большинство металлов на Земле находятся в связном состоянии - в виде оксидов, гидроксидов, солей. Поэтому промышленное и лабораторное получение чистых металлов, как правило, основано на тех или иных реакциях восстановления.

Вам понадобится

  • - соли, оксиды металлов;
  • - лабораторное оборудование.

Инструкция

Восстановите цветные металлы путем проведения электролиза водных их с высоким показателем растворимости. Этот метод применяется в промышленных масштабах для получения некоторых . Также данный процесс можно осуществить в лабораторных условиях на специальном оборудовании. Например, можно восстановить в электролизере медь из раствора ее сульфата CuSO4 (медного купороса).

Восстановите металл путем электролиза расплава его соли. Подобным образом можно получать даже щелочные металлы , например, натрий. Этот способ также используется в промышленности. Для восстановления металла из расплава соли необходимо специальное оборудование ( имеет высокую температуру, а образующиеся в процессе электролиза газы необходимо эффективно отводить).

Осуществите восстановление металлов из солей их и слабых органических путем прокаливания. Например, в лабораторных условиях можно произвести железа из его оксалата (FeC2O4 - железо щавелевокислое) путем сильного прогревания в колбе из кварцевого стекла.

Получите металл из его оксида или смеси оксидов путем восстановления углеродом или . При этом оксид углерода может образовываться непосредственно в зоне реакции вследствие неполного окисления углерода кислородом воздуха. Подобный процесс протекает в доменных печах при выплавке железа из руды.

Восстановите металл из его оксида более сильным металлом. Например, можно произвести реакцию восстановления железа алюминием. Для ее осуществления готовится смесь порошка оксида железа и алюминиевой пудры, после чего она поджигается с помощью магниевой ленты. Данная проходит с выделением очень большого количества тепла (из оксида железа и алюминиевого порошка производятся термитные шашки).

Видео по теме

Обратите внимание

Производите реакции восстановления металлов только в лабораторных условиях, на специальном оборудовании и с соблюдением всех правил техники безопасности.

Перенесенные воспалительные заболевания легких, вредное производство, аллергены, отказ от курения и другие факторы требуют активного оздоровления. Смолы, шлаки и токсины годами накапливаются в органах дыхания. Они становятся источником воспалительных процессов. Для восстановления легких необходимо комплексное воздействие на них. На помощь придут дыхательные упражнения, физическая активность на свежем воздухе и, конечно же, фитотерапия.

Вам понадобится

  • - корень алтея;
  • - живица, сахарный песок;
  • - сосновые почки;
  • - корень солодки, лист шалфея, листья мать-и-мачехи, плоды аниса;
  • - эфирные масла эвкалипта, пихты, сосны, майорана;
  • - чабрец.

Инструкция

Какие существуют оксиды меди

Кроме вышеупомянутого основного оксида меди CuO, бывают оксиды одновалентной меди Сu2O и оксид трехвалентой меди Сu2O3. Первый из них может быть получен при нагревании меди при сравнительно невысокой температуре, порядка 200 оС. Однако такая реакция протекает только при недостатке кислорода, что в опять-таки невозможно. Второй оксид образуется при взаимодействии гидроксида меди с сильным окислителем в щелочной среде, к тому же при низких температурах.

Таким образом, можно сделать вывод, что условиях оксидов меди можно не опасаться. В лабораториях и на производстве при работе и ее соединениями необходимо строго соблюдать правила техники безопасности.

Медь

МЕДЬ -и; ж.

1. Химический элемент (Сu), ковкий металл желтого цвета с красноватым отливом (широко применяется в промышленности). Добыча меди. Надраить м. самовара. Изготовить из меди котелок.

2. собир. Изделия из этого металла. Вся м. в подвале позеленела. / О музыкальных инструментах из такого металла (преимущественно духовых). М. оркестра.

3. собир. Разг. Монеты из такого металла. Дать сдачу медью. В кошельке одна м.

4. обычно чего. Красновато-желтый, цвета такого металла. Осенняя м. листьев. Любоваться медью заката.

5. Звонкий, низкий, отчётливый (о звуках). Слушать м. колоколов. В голосе звучала м.

Ме́дный (см.).

медь

(лат. Cuprum), химический элемент I группы периодической системы. Металл красного (в изломе розового) цвета, ковкий и мягкий; хороший проводник тепла и электричества (уступает только серебру); плотность 8,92 г/см 3 , t пл 1083,4°C. Химически малоактивна; в атмосфере, содержащей CO 2 , пары Н 2 O и др., покрывается патиной - зеленоватой плёнкой основного карбоната (ядовит). Из минералов важны борнит, халькопирит, халькозин, ковеллин, малахит; встречается также самородная медь. Главное применение - производство электрических проводов. Из меди изготовляют теплообменники, трубопроводы. Более 30% меди идёт на сплавы.

С небольшой задержкой проверим, не скрыл ли videopotok свой iframe setTimeout(function() { if(document.getElementById("adv_kod_frame").hidden) document.getElementById("video-banner-close-btn").hidden = true; }, 500); } } if (window.addEventListener) { window.addEventListener("message", postMessageReceive); } else { window.attachEvent("onmessage", postMessageReceive); } })();

МЕДЬ

МЕДЬ (лат. Cuprum), Cu (читается «купрум»), химический элемент с атомным номером 29, атомная масса 63,546. Латинское название меди происходит от названия острова Кипра (Cuprus), где в древности добывали медную руду; однозначного объяснения происхождения этого слова в русском языке нет.
Природная медь состоит из двух стабильных нуклидов (см. НУКЛИД) 63 Cu (69,09% по массе) и 65 Cu (30,91%). Конфигурация двух внешних электронных слоев нейтрального атома меди 3s 2 p 6 d 10 4s 1 . Образует соединения в степенях окисления +2 (валентность II) и +1 (валентность I), очень редко проявляет степени окисления +3 и +4.
В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро (см. СЕРЕБРО) и золото (см. ЗОЛОТО (химический элемент)) .
Радиус нейтрального атома меди 0,128 нм, радиус иона Cu + от 0,060 нм (координационное число 2) до 0,091 нм (координационное число 6), иона Cu 2+ - от 0,071 нм (координационное число 2) до 0,087 нм (координационное число 6). Энергии последовательной ионизации атома меди 7,726, 20,291, 36,8, 58,9 и 82,7 эВ. Сродство к электрону 1,8 эВ. Работа выхода электрона 4,36 эВ. По шкале Полинга электроотрицательность меди 1,9; медь принадлежит к числу переходных металлов. Стандартный электродный потенциал Cu/Cu 2+ 0,339 В. В ряду стандартных потенциалов медь расположена правее водорода и ни из воды, ни из кислот водорода не вытесняет.
Простое вещество медь - красивый розовато-красный пластичный металл.
Нахождение в природе
В земной коре содержание меди составляет около 5·10 -3 % по массе. Очень редко медь встречается в самородном виде (см. МЕДЬ САМОРОДНАЯ) (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит (см. ХАЛЬКОПИРИТ) , или медный колчедан, CuFeS 2 (30% меди), ковеллин (см. КОВЕЛЛИН) CuS (64,4% меди), халькозин (см. ХАЛЬКОЗИН) , или медный блеск, Cu 2 S (79,8% меди), борнит (см. БОРНИТ) Cu 5 FeS 4 .(52-65% меди). Существует также много и оксидных руд меди, например: куприт (см. КУПРИТ) Cu 2 O, (81,8% меди), малахит (см. МАЛАХИТ) CuCO 3 ·Cu(OH) 2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.
Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо, цинк, свинец, и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (см. РАССЕЯННЫЕ ЭЛЕМЕНТЫ) (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1% по массе, а то и менее.
В морской воде содержится примерно 1·10 -8 % меди.
Получение
Промышленное получение меди - сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения. Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем. В результате обжига образуется огарок - твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн (см. ШТЕЙН (в металлургии)) , в котором содержание меди составляет до 40-50%.
Далее штейн подвергают конвертированию - через расплавленный штейн продувают сжатый воздух, обогащенный кислородом. В штейн добавляют кварцевый флюс (песок SiO 2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO 2:
2FeS + 3O 2 + 2SiO 2 = 2FeSiO 3 + 2SO 2
Одновременно сульфид меди(I) Cu 2 S окисляется:
2Cu 2 S + 3О 2 = 2Cu 2 О + 2SO 2
Образовавшийся на этой стадии Cu 2 О далее реагирует с Cu 2 S:
2Cu 2 О + Cu 2 S = 6Cu + SО 2
В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии - огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки.
На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама (см. ШЛАМ) , а примеси более активных металлов остаются в электролите. Чистота рафинированной (катодной) меди достигает 99,9% и более.
Физические и химические свойства
Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см 3 , температура плавления 1083,4 °C, температура кипения 2567 °C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20 °C удельное сопротивление 1,68·10 -3 Ом·м).
В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH) 2 ·CuCO 3 . Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения. Для создания на художественных предметах «налета старины» на них наносят слой меди, который затем специально патинируется.
При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu 2 O, затем - оксид CuO.
Красновато-коричневый оксид меди(I) Cu 2 O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди(I) CuBr и иодид меди(I) CuI. При взаимодействии Cu 2 O с разбавленной серной кислотой возникают медь и сульфат меди:
Cu 2 O + H 2 SO 4 = Cu + CuSO 4 + H 2 O.
При нагревании на воздухе или в кислороде Cu 2 O окисляется до CuO, при нагревании в токе водорода - восстанавливается до свободного металла.
Черный оксид меди (II) CuO, как и Cu 2 O, c водой не реагирует. При взаимодействии CuO с кислотами образуются соли меди (II):
CuO + H 2 SO 4 = CuSO 4 + H 2 O
При сплавлении со щелочами CuO образуются купраты, например:
CuO + 2NaOH = Na 2 CuO 2 + H 2 O
Нагревание Cu 2 O в инертной атмосфере приводит к реакции диспропорционирования:
Cu 2 O = CuO + Cu.
Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например:
CuO +СО = Cu + СО 2 .
Кроме оксидов меди Cu 2 O и CuO, получен также темно-красный оксид меди (III) Cu 2 O 3 , обладающий сильными окислительными свойствами.
Медь реагирует с галогенами (см. ГАЛОГЕНЫ) , например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl 2 . Существуют также дифторид меди CuF 2 и дибромид меди CuBr 2 , но дииодида меди нет. И CuCl 2 , и CuBr 2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы.
При реакции CuCl 2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы - , 2- и [СuCl 4 ] 3- , например за счет процесса:
CuCl + НCl = H
При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu 2 S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II):
H 2 S + CuSO 4 = CuS + H 2 SO 4
C водородом, азотом, графитом, кремнием медь не реагирует. При контакте с водородом медь становится хрупкой (так называемая «водородная болезнь» меди) из-за растворения водорода в этом металле.
В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется:
2Cu + 4HCl + O 2 = 2CuCl 2 + 2H 2 O.
С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота. Например, с 30%-й азотной кислотой реакция меди протекает так:
3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.
С концентрированной серной кислотой медь реагирует при сильном нагревании:
Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O.
Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):
2FeCl 3 + Cu = CuCl 2 + 2FeCl 2
Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.
Ионы меди Cu 2+ легко образуют комплексы с аммиаком, например, состава 2+ . При пропускании через аммиачные растворы солей меди ацетилена С 2 Н 2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC 2 .
Гидроксид меди Cu(OH) 2 характеризуется преобладанием основных свойств. Он реагирует с кислотами с образованием соли и воды, например:
Сu(OH) 2 + 2HNO 3 = Cu(NO 3) 2 + 2H 2 O.
Но Сu(OH) 2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например:
Сu(OH) 2 + 2NaOH = Na 2
Если в медноаммиачный раствор, полученный растворением Сu(OH) 2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы. Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей.
Применение
Медь, как полагают, - первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (см. БРОНЗОВЫЙ ВЕК) (конец 4 - начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы (см. БРОНЗА) .
С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь - незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике - для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.
Большое значение имеют медные сплавы - латуни (см. ЛАТУНЬ) (основная добавка цинк, Zn), бронзы (сплавы с разными элементами, главным образом металлами - оловом, алюминием, берилием, свинцом, кадмием и другими, кроме цинка и никеля) и медно-никелевые сплавы, в том числе мельхиор (см. МЕЛЬХИОР) и нейзильбер (см. НЕЙЗИЛЬБЕР) . В зависимости от марки (состава) сплавы используются в самых различных областях техники как конструкционные, антидикционные, стойкие к коррозии материалы, а также как материалы с заданной электро- и теплопроводностью Так называемые монетные сплавы (медь с алюминием и медь с никелем) применяют для чеканки монет - «меди» и «серебра»; но медь входит в состав и настоящих монетного серебра и монетного золота.
Биологическая роль
Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) ). В растениях и животных содержание меди варьируется от 10 -15 до 10 -3 %. Мышечная ткань человека содержит 1·10 -3 % меди, костная ткань - (1-26) ·10 -4 %, в крови присутствует 1,01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных - участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз (см. ОКСИДАЗЫ) , катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза (см. ФОТОСИНТЕЗ) . Другой медьсодержащий белок, гемоцианин (см. ГЕМОЦИАНИН) , выполняет роль гемоглобина (см. ГЕМОГЛОБИН) у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков. Церулоплазмин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма - дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ. Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0,5-6 мг меди.
Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м 3 , для питьевой воды содержание меди должно быть не выше 1,0 мг/л.


Энциклопедический словарь . 2009 .

Синонимы :

Медь - один из первых металлов, которые человек начал применять для технических целей. Вместе с золотом, серебром, железом, оловом, свинцом и ртутью, медь известна людям с древнейших времен и сохраняет свое важное техническое значение до наших дней.

Медь или Сu(29)

Медь - металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.

Латинское название меди Cuprum произошло от названия острова Кипр, где уже в III в. до н. э. существовали медные рудники и выплавлялась медь. Около II - III в. выплавка меди производилась в широком масштабе в Египте, в Месопотамии, на Кавказе, в других странах древнего мира. Но, тем не менее, медь - далеко не самый распространенный в природе элемент: содержание меди в земной коре составляет 0,01%, а это лишь 23-е место среди всех встречающихся элементов.

Получение меди

В природе медь присутствует в виде сернистых соединений, оксидов, гидрокарбонатов, углекислых соединений, в составе сульфидных руд и самородной металлической меди.

Наиболее распространенные руды - медный колчедан и медный блеск, содержащие 1-2 % меди.

90 % первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим. Гидрометаллургический способ - это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700-800°C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450°C.

С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200-1300°C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 - 99,4 % меди, 0,01 - 0,04 % железа, 0,02 - 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 - 99,7%. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95%). Электролиз проводят в ваннах, где анод - из меди огневого рафинирования, а катод - из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Кроме этого, существуют технологии получения меди из лома. В частности, путем огневого рафинирования из лома получают рафинированную медь.
По чистоте медь делится на марки: М0 (99,95% Cu), М1 (99,9%), М2(99,7%), М3 (99,5%), М4 (99%).

Химические свойства меди

Медь - малоактивный металл, который не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако, медь растворяется в сильных окислителях (например, азотной и концентрированной серной).

Медь обладает достаточно высокой стойкостью к коррозии. Однако, во влажной атмосфере, содержащей углекислый газ, поверхность металла покрывается зеленоватым налетом (патиной).

Основные физические свойства меди

Механические свойства меди

При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации.

Применение меди

Такие свойства меди, как электропроводность и теплопроводность, обусло- вили основную область применения меди - электротехническая промыш- ленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование.

Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий и т. д. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами.

Очень важная область применения меди - производство сплавов. Один из самых полезных и наиболее употребляемых сплавов - латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет.

С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.

Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве.

Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.

Среди товаров, которыми торговали в далекие времена александрийские купцы, большой популярностью пользовалась "медная зелень". С помощью этой краски модницы подводили зеленые круги под глазами - в те времена это считалось проявлением хорошего вкуса.

С древних времен люди верили в чудодейственные свойства меди и исполь- зовали этот металл при лечении многих недугов. Считалось, что медный браслет, одетый на руку, приносит своему владельцу удачу и здоровье, нормализует давление, препятствует отложению солей.

Многие народы и в настоящее время приписывают меди целебные свойст- ва. Жители Непала, например, считают медь священным металлом, который способствует сосредоточению мыслей, улучшает пищеварение и лечит желудочно-кишечные заболевания (больным дают пить воду из стакана, в котором лежат несколько медных монет). Один из самых больших и красивых храмов в Непале носит название "Медный".

Был случай, когда медная руда стала... виновником аварии, которую потер- пело норвежское грузовое судно "Анатина". Трюмы теплохода, направляв- шегося к берегам Японии, были заполнены медным концентратом. Внезапно прозвучал сигнал тревоги: судно дало течь.

Оказалось, что медь, содержащаяся в концентрате, образовала со сталь- ным корпусом "Анатины" гальваническую пару, а испарения морской воды послужили электролитом. Возникший гальванический ток разъел обшивку судна до такой степени, что в ней появились дыры, куда и хлынула океан- ская вода.



Вверх