Град почему он бывает. Град, атмосферные осадки

Вряд ли жители области, где прошел самый большой в мире град, стали довольны такой славой их земли. Град – одно из самых опасных . Он проявляется в падении с неба тяжелых кусков льда, как правило, имеющих округлую форму. Град уничтожает посевы, рушит инфраструктуру и может даже убивать людей и животных.

Где и когда выпал самый большой град?

Топ-1. Южная Дакота, 2010 год

По данным современных метеонаблюдений, самый большой град выпал 23 июля 2010 года. Местом действия стал городок Вивиен в Южной Дакоте (США). В послеобеденные часы и ранним вечером в центральной части штата шли грозы. Особенно сильная гроза, двигаясь к югу, прошла по округам Стэнли, Джонс и Лайман.

По данным метеорологов, особенно пострадал городок Вивиен, где засвидетельствовали град, торнадо и шквальный ветер. Диаметр выпавших градин составил около 47 сантиметров, а вес – около 900 грамм.

Уцелевшую градину рекордного диаметра обнаружил житель городка по имени Ли Скотт. Упавший с неба ледяной камень сумел создать ударную яму диаметром 25 сантиметров. Сотрудники национальной метеорологической службы прибыли на место не сразу. И ко времени, когда они смогли измерить сохранившиеся осадки, градина успела уменьшиться в размерах за счет таяния.

Долгое время крупнейшим градом в истории (среди зафиксированных) считался выпавший летом 2003 года в американском штате Небраске. Гроза прошла по южной части штата в июне. Измерения сохранившихся градин показали, что их диаметр составлял около 18 сантиметров. При этом окружность градины составила 47 сантиметров, что больше, чем у образца, упавшего спустя семь лет на Дакоту. Ударная яма на месте падения градины составила 36 сантиметров в диаметре, что также превосходит результат, обнаруженный в Дакоте.

Градина рекордного размера была обнаружена сотрудниками климатологической службы 22 июня около городка Аврора. Джей Лоурингтон, сотрудник службы, заметил, что, если бы местные жители не подобрали градину и не обеспечили ей подходящий температурный режим до приезда ученых, они бы не узнали о рекорде. Также он отметил, что кусок ледяного камня упал в сточную канаву и потерял 40% своего веса.

Градина была доставлена в Национальный центр атмосферных исследований в городе Боулдер (штат Колорадо), где она должна храниться вечно.

Град обрушился на местечко Коффивилл 3 сентября 1970 года. По данным исследователей, диаметр самой большой градины составил 14 сантиметров, а вес достигал 700 грамм.

Хотя самые большие по диаметру и окружности градины обрушивались в течение последних ста лет на США, у многих странах есть собственные (пусть и менее впечатляющие) рекорды:

  • Канада. 31 июля 1987 года на провинцию Алберта обрушилось «Эдмонтонское торнадо». После него была обнаружена градина диаметром 7,8 сантиметров.
  • Австралия. 14 апреля 1999 года страшный град обрушился на Сидней. Самые большие градины достигали размера в 9,5. сантиметров. Шторм повредил 20 тысяч зданий, 40 тысяч автомобилей и 25 самолетов, находившихся в аэропорту. Молния убила одного рыбака, и несколько человек были ранены. Ущерб от града составил полтора миллиарда долларов США.
  • Германия. Серия крупных градов обрушилась на территорию земель Баден-Вюртемберг и Нижняя Саксония. Около вюртембергского города Ройтлинген была обнаружена градина диаметром 14 сантиметров.

Первый засвидетельствованный в истории град-убийца, возможно, относится к IX столетию нашей эры. Около озера Роопкунд в Гималаях обнаружили несколько десятков скелетов людей, погибших в IX веке. Предполагают, что это были переселенцы, искавшие новое место для жизни. Одна из версий их гибели – сильный град.

Самый тяжелый в истории наблюдений град упал на район Гопалганджи в Бангладеше 14 апреля 1986 года. Сохранившиеся образцы при измерениях показали вес в один килограмм. Осадки в Бангладеше привели к человеческим жертвам – погибло 92 человека.

Наибольшее скопление града на земле было зафиксировано в 1959 году в Канзасе. 3 июня район Селдон подвергся продолжительному градопаду, после чего площадь до 140 квадратных километров была усеяна осадками высотой до 45 сантиметров.

Самый смертоносный град в истории наблюдений засвидетельствован в Индии. В 1888 году природная катастрофа обрушилась на районы Морабахад и Бехери. По словам очевидцев, с неба падали градины размером с апельсин. Градопад привел к гибели 246 человек и 1 600 овец и коз. В конце XIX века еще не существовало системы предупреждения о граде, что привело к такому количеству жертв.

Это не единственные примеры убийственных выпадений осадков в мире. В 1979 году в колорадском городе Форт Коллинз прошел град, в ходе которого с неба падали ледяные глыбы размером с грейпфрут. Они повредили 2 000 домов и 2 500 машин. Двадцать пять человек были ранены (главным образом от ударов градин по голове), а маленький ребенок умер от перелома черепа, пока его мать искала укрытие от гнева природы.

Хотя самый большой в мире градне привел к наибольшему разрушению, он оставил свой след на облике Южной Дакоты. Сегодня эффективнее работает система предупреждения о чрезвычайных ситуациях, что позволяет не допустить человеческих жертв. Но современные деревни и города по-прежнему уязвимы перед падающими с неба ледяными глыбами, которые повреждают дома, и сады.

Что такое град и как он образуется

Очень часто в летнюю пору наблюдается необычный вид осадков в виде небольших, а иногда и крупных льдинок. Их форма может быть разной: от мелких крупинок до больших градин размером с куриное яйцо. Такой град может вызвать катастрофические последствия – насести материальный ущерб и вред здоровью, а также урон сельскому хозяйству. Но где и как образуется град? Этому есть научное объяснение.

Образованию града способствуют сильные восходящие потоки воздуха внутри большого кучевого облака. Этот вид атмосферных осадков состоит из кусочков льда разного размера. Структура градины может состоять из нескольких чередующихся слоев льда – прозрачных и полупрозрачных.

Как образуются льдинки

Образование града – сложный атмосферный процесс, основанный на круговороте воды в природе. Теплый воздух, который содержит пары влаги, в жаркий летний день поднимается вверх. По мере увеличения высоты эти пары охлаждаются, а вода конденсируется – так образуется облако. Оно, в свою очередь становится источником дождя.

Но бывает и так, что днем слишком жарко, а восходящий поток воздуха настолько сильный, что капли воды поднимаются на очень большую высоту, минуя область нулевой изотермы, и становятся переохлажденными. В таком состоянии капли могут встречаться даже при температуре в -400С на высоте более 8-ми километров. Переохлажденные капли сталкиваются в воздушном потоке с мельчайшими частицами песка, продуктами сгорания, бактериями и пылью, которые становятся центрами кристаллизации влаги. Так зарождается льдинка – к этим маленьким частичкам прилипают все новые капельки влаги и при изотермической температуре превращаются в настоящий град. Структура градины может поведать историю ее зарождения посредством слоев и своеобразных колец. Их количество свидетельствует о том, сколько раз градинка поднималась в верхние слои атмосферы и спускалась обратно в облако.


От чего зависит размер градин

Скорость восходящих потоков внутри кучевых облаков может варьировать от 80 до 300 км/час. Поэтому сформированные только что льдинки могут непрестанно перемещаться также на большой скорости вместе с потоками воздуха. И чем больше будет скорость их перемещения, тем больше будет размер градин. Проходя многократно через слои атмосферы, где температура изменяется, поначалу маленькие градинки обрастают новыми слоями воды и пыли, формируя порой градины внушительных размеров – диаметром в 8-10 см и весом до 500 грамм.

Одна капля дождя формируется примерно из миллиона переохлажденных частиц воды. Градины, диаметр которых превышает 50 мм, обычно формируются в ячейковых кучевых облаках, где наблюдается сверхмощные восходящие потоки воздуха. с участием таких дождевых облаков может породить интенсивные шквалы ветра, сильные ливни и смерчи.


Как бороться с градом?

За многолетнюю историю метеонаблюдений люди обнаружили, что градины не образуются при резких звуках. Поэтому наиболее современными средствами борьбы с градом, которые доказали свою эффективность, являются специальные зенитные орудия. При выпуске зарядов из таких орудий по черным, густым облакам достигается сильный звук от их разрыва. Разлетающиеся частицы порохового заряда способствуют формированию капель на сравнительно небольшой высоте. Так, содержащаяся в воздухе влага не формирует град, а проливается на землю дождем.

Еще один популярный способ предотвращения выпадения осадков в виде града – искусственное распыление мелкой пыли. Для этого обычно используются самолеты, которые пролетают непосредственно над грозовым облаком. При распылении микроскопических частиц пыли создается огромное количество градовых зародышей. Эти мельчайшие частички льда перехватывают капли переохлажденной воды. Суть метода состоит в том, что в грозовом облаке запасы переохлажденной воды невелики, а каждый зародыш града препятствует росту других. Поэтому выпадающие на землю градинки имеют небольшой размер и не наносят серьезного урона. Также существует большая вероятность, что вместо града пойдет обычный ливень.

Такой же принцип используется и в третьем способе предотвращения града. Искусственные градовые зародыши могут быть созданы, если внести в переохлажденную часть кучевого облака йодистое , сухую углекислоту или свинец. Из одного грамма этих веществ может быть создано 1012 (триллион) кристалликов льда.

Все эти способы борьбы с градом зависят от метеорологических прогнозов. Важно вовремя укрыть молодые посевы, вовремя собрать урожай, спрятать ценные вещи и предметы, автомобили. Также не следует оставлять на открытой местности домашний скот.


Такие простые меры помогут минимизировать ущерб, причиненный вследствие выпадения града. Их лучше предпринимать незамедлительно, как только передали прогноз по граду или же на горизонте появились угрожающие тучи характерного облика.

Градом называются особого рода ледяные образования, выпадающие иногда из атмосферы и причисляемые к атмосферным осадкам, иначе гидрометеорам. Вид, строение и размеры градин крайне разнообразны. Одна из наиболее обыкновенных форм - коническая или пирамидальная с острыми или слегка усеченными верхушками и закругленным основанием; верхняя часть таких градин обыкновенно более мягкая, матовая, как бы снежная; средняя - полупрозрачная, состоящая из концентрических, чередующихся между собою прозрачных и непрозрачных слоев; нижняя, самая широкая - прозрачная (наблюдения киевской метеор. обсерв., апрель 1892 г., "Извест. унив. св. Влад".).

Не менее часто встречается шарообразная форма, состоящая из внутреннего снежного ядра (иногда, хотя и реже, центральная часть состоит из прозрачного льда), окруженного одной или несколькими прозрачными оболочками. Встречаются также градины сфероидальные, с углублениями у концов малой оси, с разнообразными выступами, иногда кристаллическими, как это наблюдали: Абих на Кавказе (ледяные шары с большими наросшими на них скаленоэдрами, "Записки кавк. отд. Р. Г. общ.", 1873), Бланфорд в Ост-Индии ("Proceedings of the Asiatic Soc.", июнь 1880), Лангер около Пешта ("Met. Zeitschr." 1888, стр. 40) и другие. Иногда вид градин бывает весьма сложный, напр. напоминает цветок со многими лепестками. Подобная форма представлена на этом рисунке.

Бывают, наконец, формы крайне простые - параллелепипедальные, пластинчатые и проч.

Весьма разнообразные и любопытные формы градин описаны в "Метеорологическом обозрении" проф. А. В. Клоссовского ("Труды метеор. сети ЮЗ России" 1889, 1890, 1891). Они представлены на таблице в натуральную величину. Более затушеванные места сооответствуют менее прозрачным частям градин.

Градины выпали в юго-западной России: фиг. I - в Черниговской губ. в 1876 г.; фиг. II - в Херсонской губ. в том же году; фиг. III, V, VI, VII, VIII, IX [В таблице "Град" группа шести градин (в нижней половине табл.) ошибочно обозначена римскою цифрою XI, вместо нее должна быть IX], X, ХI - в Херсонской губернии в 1887 г.; фиг. IV - в Таврической губ. в 1887 г.; фиг. ХII - в Подольской губ.; фиг. XIII - в Таврической губ. в 1889 г.; фиг. XV - в Минской губ. в 1880 г.; фиг. XVI - в Одессе в 1881 г. Особенно замечательны формы, изображенные на фиг. IX (а, b, с, d, e, f, g, h, i) [В таблице "Град" группа шести градин (в нижней половине табл.) ошибочно обозначена римскою цифрою XI, вместо нее должна быть IX], выпавшие в Херсонской губернии, в деревне Зеленовке Елизаветградского уезда, 19 августа 1887 г., в день полного солнечного затмения, приблизительно через час по окончании затмения, при сильном SW вихре (рис. в тексте); середина состоит из темносинего льда с углублением; вокруг как бы фаянсовый белый кружок, местами грязноватый, по-видимому, с пылью; за ним следуют ледяные лепестки, из которых два внутренние ряда цвета белого фаянса, последний ряд цвета обыкновенного льда.

Подобную же форму имеют и градины, изображенные на фигурах IX b и с. Фиг. IX d - шарообразная форма, прозрачная с белыми тонкими полосками на поверхности. Фиг. IX е - плоская, немного вогнутая, белого цвета. Фиг. IX h и и - параллелепипедальная, прозрачная, или же молочного цвета, или цвета белого фаянса.

Химический анализ воды, собранной от этих градин, показал, что в них были органические вещества, а также глинистые частицы и зерна кварца. Подобные посторонние включения - не редкость в градинах. Всего чаще они находятся в центральной части градин и представляют собою или песчинку, или частицу пепла, или органическое тело, а иногда и метеорную пыль. Иногда пыль, заключающаяся внутри градин, бывает красная, что сообщает градинам красноватый оттенок.

Наиболее обыкновенные размеры градин - от горошины до голубиного яйца, но бывают и больше, как это видно, напр., из чертежей таблицы, представляюших градины в натуральную величину.

11 августа 1846 г. в Лифляндской губ. выпал град величиною в кулак (К. Веселовский. "О климате России", 1857). В 1863 г. выпавший на о-ве Зеландии Г. был так велик, что пробил крыши домов и даже потолки. Вес одной из проникшей в дом градины оказался 15 фн. В 1850 г. на Кавказе выпали град в 25 фн. весом (Веселовский, "О климате России" стр. 363). В Земле Войска Донского однажды выпали глыбы льда в два аршина в окружности. О граде еще большей величины см. ст. проф. Шведова: "Что такое град" ("Журн. русского физико-химич. общества" 1881).

В каком большом количестве иногда выпадает град, видно из письма миссионера Берлина (Berlyn) из западн. Монголии ("Ciel et Terre", т. X). В 1889 г., по его словам, здесь выпал град, в течение четверти часа покрывший землю слоем в три фута толщиною; после града пошел ливень, который автор письма называет дилювиальным.

Температура градин бывает большею частью 0°, но иногда -2, -4, -9°. По Буссенго, температура града, выпавшего в 1875 г. в дпт. Луары, была -13° при +26° в воздухе ("Compt. Rend." T. LXXXIX). Град сопровождается обыкновенно (некоторые полагают, что даже всегда) грозою и бывает в небольших грозовых вихрях (смерчах, торнадо) с сильным восходящим течением воздуха, возникающих и движущихся в обыкновенных циклонах (см. Грозы и Циклоны).

Вообще смерч, торнадо и град - явления весьма тесно связанные между собою и с циклоническою деятельностью. Град почти всегда выпадает перед ливнем или одновременно с ним и почти никогда после него. Градовые вихри иногда бывают необыкновенно сильны. Облака (см. Облака), из которых выпадает град, характеризуются темно-серым пепельным цветом и белыми, как бы изодранными, верхушками. Каждое облако состоит из нескольких нагроможденных друг на друга облаков: нижнее находится обыкновенно на небольшой высоте над землею, верхнее же на высоте 5, 6 и даже более тысяч метров над земною поверхностью. Иногда нижнее облако вытягивается в виде воронки, как это свойственно явлению смерчей.

Случается, что с градом выпадают предметы, поднятые сильным восходящим воздушным током, напр. камни, куски дерева и проч. Так, 4 июня 1883 г. в Вестмонланде (Швеция) вместе с градом упали камни величиною с орех, состоящие из тех горных пород Скандинавского полуострова (Nordenskjold, изд. Vetenskaps Akademien 1884, № 6); в Боснии в июле 1892 г. выпало вместе с дождем и градом множество мелких рыбок из породы уклеек ("Метеорологический вестник" 1892, стр. 488). Явление Г. сопровождается особым характерным шумом от ударения градин, напоминающим шум, происходящий от высыпания орехов. Град выпадает большею частью в летнее время и днем. Град ночью - явление весьма редкое. Продолжается несколько минут, обыкновенно меньше четверти часа; но бывают случаи, когда он длится и долее.

Распределение явления града на земле зависит от широты, но главным образом от местных условий. В тропических странах град - явление весьма редкое, причем он там падает почти только на высоких плоскогорьях и горах. Так, в Кумане, на берегу Антильского моря, град - явление невиданное, а недалеко отсюда, в Каракасе, на высоте нескольких сот футов, он хотя бывает, но не более одного раза в четыре года. Некоторые низменности тропических стран, впрочем, представляют исключения. Сюда относится, например, Сенегал, в котором град идет ежегодно, притом в таком количестве, что покрывает почву слоем в несколько сантиметров толщины (Raffenel, "Nouveau voyage au pays des nègres", 1856).

В полярных странах град - явление тоже весьма редкое. Гораздо чаще он бывает в умеренных широтах. Здесь его распределение обусловливается расстоянием от моря, видом поверхности суши и пр. Над морем град бывает реже, чем над сушею, потому что для образования его необходимы восходящие токи воздуха, которые над сушею бывают чаще и сильнее, чем над морем. На суше вблизи берега он бывает чаще, чем вдали от него; так, в среднем выводе, во Франции ежегодно бывает до 10 и даже более раз, в Германии 5, в Евр. России 2, в Западной Сибири 1. В низменностях умеренных стран град чаще, чем на горах, притом над низменностями неровными чаще, чем над ровными; так, около Варшавы, где местность ровная, он реже, чем в местах, более близких к Карпатам; в долинах он бывает чаще, чем на горных склонах.

О влиянии леса на выпадение града см. Градобитие. О влиянии местных условий на распределение града см.: Абих, "Записки кавказ. отдел. Русск. Геогр. общ." (1873); Lespiault, "Etude sur les orages dans le depart. de la Gironde" (1881); Riniker, "Die Hagelschläge etc. im Canton Aargau" (Берлин, 1881).

Град выпадает узкими и длинными полосами. Град, выпавший во Франции 13 июля 1788 г., прошел двумя полосами с ЮЗ на СВ: одна из полос имела ширину 16 в., длину 730, другая - ширину 8, длину 820 в.; между ними была полоса шириною около 20 в., где града не было. Град сопровождался грозою и распространялся со скоростью 70 в. в час.

Исследования распределения градов и гроз в России, произведенные проф. А. В. Клоссовским ("К учению об электрической энергии в атмосфере. Грозы в России", 1884 и "Метеорол. Обозрение" за 1889, 1890, 1891 гг.), подтверждают существование самой тесной связи между этими двумя явлениями: град вместе с грозами бывает обыкновенно в юго-вост. части циклонов; он чаще там, где чаще грозы. Север России беден случаями выпадения града, иначе сказать, градобитиями. Число дней с градом в среднем выводе здесь около 0,5 в год. В Прибалтийском крае градобития чаще (от 0,5 до 2,4). Дальше к югу число градобитий несколько увеличивается и максимума достигает в Юго-Зап. крае, а дальше, к Черному морю, снова уменьшается (около 1 в год).

Новое усиление градовой деятельности замечается в начале XX века на Кавказе, где оно достигает 3,3 (Даховский пост) и даже 6,5 (Белый Ключ) в год. От Урала и Западной Сибири (около 2) далее на В число градобитий уменьшается (Нерчинск - 0,6, Иркутск - 0,3).

От града надо отличать сходные с ним образования: крупу и ледяной дождь. Крупа - это шарообразные образования, состоящие из однородной непрозрачной массы белого цвета, происходящей от скучивания кристаллов снега. Ледяной дождь - это ледяные шарики или сфероиды, совершенно прозрачные, образующиеся вследствие замерзания дождевых капель.

Отличие от них града заключается в том, что град бывает преимущественно летом, крупа - зимою и весною, ледяной же дождь - зимою, осенью и весною. Другое отличие то, что последние гидрометеоры не сопровождаются электрическими явлениями. Вольта ("Sopra la grandine" 1792) объяснял происхождение града движением вверх и вниз ледяных частиц в верхних слоях атмосферы между облаками, наэлектризованными противоположными электричествами, при котором влага воздуха оседает на них, образуя ледяные оболочки; когда они делаются настолько тяжелыми, что электрические силы не могут поддерживать их в воздухе, они падают. Но аэронавты никогда не замечали восходящего и нисходящего движения ледяных кристаллов в воздухе, хотя им не раз приходилось пролетать через облака, состоящие из таких кристаллов. Кроме того, теория Вольты не объясняет ни присутствия в градинах посторонних твердых частиц, ни связи с грозами и смерчами.

После Вольты было предложено много гипотез, но, несмотря на то, явление града в начале XX века представляло еще много загадочного. Еще Леопольд фон-Бух высказал мысль, что град есть следствие быстрого восходящего движения воздуха. То же подтвердили Рейе (Reye, "Wirbelstürme, Tornados u. Wettersaülen", 1872) Феррель (Ferrel, "Meteorological remarks for the use of the Coast Pilot", pt. II), и Ган, (Hann, "Die Gesetze d. Temperatur-Aenderung in aufsteigenden Luftströmungen", в "Zeitschr. für Meteor." 1874). Исследования трех последних ученых показали, что если вследствие нагревания земли, при условии ненормально быстрого убывания температуры с высотою, образуется восходящее движение воздуха, то оно может достичь большой быстроты (20 м и даже более в секунду), особенно если поднимающийся воздух содержит много водяного пара, конденсация которого ведет за собою выделение теплоты, поддерживающей и усиливающей ток.

Наиболее благоприятные условия для образования таких токов существуют в юго-вост. части наших циклонов, отчего град должен быть в этой части циклонов всего чаще, что в действительности и наблюдается. Эти токи увлекают с собою вверх с земной поверхности, иногда до весьма большой высоты, пыль, песок, куски дерева, камни и проч. Но твердые частицы преимущественно и производят конденсацию пара, отчего образуются водяные частицы и мелкие ледяные кристаллы, иглы и снежинки облаков. На всякой высоте температура восходящего потока вследствие конденсации водяного пара выше температуры окружающего воздуха, отчего может случиться, как полагает Зонке, что восходящий поток воздуха вместе с водяными частицами, в нем находящимися, прорезывает облако, состоящее из мелких ледяных кристаллов или снежинок. Вследствие трения между частицами воды и льда, как показал еще Фарадей и подтвердил Зонке и другие, происходит электризация водяных частиц (которые при дальнейшем поднятии могут превратиться в ледяные) -Е, а ледяных кристаллов +Е.

Таким образом, по мнению Зонке, происходит электризация облаков различными электричествами, ведущая за собою грозу и образование града. Первоначальное соединение частиц уясняется опытами Лоджа, показавшего, что мелкие твердые частицы, плавающие в воздухе, напр., частицы дыма и проч., при наэлектризовании весьма быстро собираются в кучи или нити и падают вниз. Подобно этому, вероятно, происходит первоначальное сближение частиц облака, вследствие чего как в окружающих восходящий ток облаках, так и в самом токе образуется первоначальная форма градин - крупа, а также сросшиеся ледяные зерна, которые падают вследствие тяжести вниз.

Образование ледяных оболочек есть следствие прохождения первоначальной формы, при падении ее через переохлажденные облака, т. е. такие, которые состоят из водяных частиц, хотя температура их ниже 0° (наблюдения на аэростатах показали, что такие облака существуют). Если твердые частицы пролетают через переохлажденные облака, то водяные частицы оседают на них, моментально замерзая и образуя таким образом наслоения (Hagenbach, "Ueber krystallinisches Hagel", в "Wiedem. Annal." 1879).

Феррель несколько видоизменяет предыдущую гипотезу, предлагая следующую (W. Ferrel, "Meteorological remarks etc." Вашингтон, 1880). Падение небольших градин может происходить лишь вне восходящего тока, где они пролетают через облака с ледяными или снежными кристаллами, при чем на них образуется слой, состоящий из замерзшего мягкого снега или малопрозрачный ледяной; в нижнем слое воздуха, в котором воздух стремится со всех сторон по горизонтальному направлению к тому месту, где происходит восходящий ток, градины вовлекаются внутрь последнего и поднимаются.

Проходя между прочим через переохлажденные облака, покрываются прозрачною ледяною оболочкою; в верхней части тока они отбрасываются в стороны и падают и т. д. Таким образом, по теории Ферреля, каждая градина может несколько раз падать и подниматься. По числу слоев в градинах, которых иногда бывает до 13, Феррель судит о числе оборотов, совершенных градиной. Циркуляция происходит до тех пор, пока градины не сделаются очень большими. По вычислению Ферреля, восходящий ток со скоростью 20 метр. в секунду в состоянии поддерживать град в 1 сантиметр в диаметре, а эта скорость для смерчей еще довольно умеренная.

Коническую форму градин Рейнольд объясняет следующим образом ("Nature", том XV, стр. 163). Большие градины, падая быстрее меньших, догоняют последние, которые к ним пристают снизу, сообщая им коническую форму с закругленным основанием. Любопытны опыты, помощью которых Рейнольд доказывает справедливость своей теории. Возможно также образование градин вследствие замерзания дождевых капель (Kl. Hess, "Ueber den Hagelschlag im Kanton Thurgau", "Meteorol. Zeitschr.", июнь 1891). H. А. Гезехус путем опытов подтверждает справедливость такого предположения ("Журнал русского физико-химического общ.", 1891).

Вследствие неравномерного отвердевания дождевых капель и расширения воды при переходе в твердое состояние происходят прорывы в образующейся вначале коре капли и выступы внутренней еще жидкой массы наружу. От этой причины являются пустоты, углубления, отростки с некристаллическим и кристаллическим строением, а иногда растрескивания коры и разбрасывание ее, чем объясняются наблюдаемые иногда формы градин в виде обломков и осколков льда. Распространение града можно объяснить передвижением вихрей (см. Грозы , а также Смерчи). В заключение упомянем о теории проф. Шведова, по которой град предполагается космического происхождения. Ей, однако, противоречат: местный характер явлений града, распределение его по временам года и часам дня, а также связь с грозами и вихреобразными движениями в атмосфере.

При написании этого текста использовался материал из
Энциклопедического словаря Брокгауза Ф.А. и Ефрона И.А. (1890-1907).

Английский
град – hail

Очень часто в летнюю пору наблюдается необычный вид осадков в виде небольших, а иногда и крупных льдинок. Их форма может быть разной: от мелких крупинок до больших градин размером с куриное яйцо. Такой град может вызвать катастрофические последствия - насести материальный ущерб и вред здоровью, а также урон сельскому хозяйству. Но где и как образуется град? Этому есть научное объяснение.

Образованию града способствуют сильные восходящие потоки воздуха внутри большого кучевого облака. Этот вид атмосферных осадков состоит из кусочков льда разного размера. Структура градины может состоять из нескольких чередующихся слоев льда - прозрачных и полупрозрачных.


Как образуются льдинки

Образование града - сложный атмосферный процесс, основанный на круговороте воды в природе. Теплый воздух, который содержит пары влаги, в жаркий летний день поднимается вверх. По мере увеличения высоты эти пары охлаждаются, а вода конденсируется - так образуется облако. Оно, в свою очередь становится источником дождя.

Но бывает и так, что днем слишком жарко, а восходящий поток воздуха настолько сильный, что капли воды поднимаются на очень большую высоту, минуя область нулевой изотермы, и становятся переохлажденными. В таком состоянии капли могут встречаться даже при температуре в -400С на высоте более 8-ми километров.

Переохлажденные капли сталкиваются в воздушном потоке с мельчайшими частицами песка, продуктами сгорания, бактериями и пылью, которые становятся центрами кристаллизации влаги. Так зарождается льдинка - к этим маленьким частичкам прилипают все новые капельки влаги и при изотермической температуре превращаются в настоящий град. Структура градины может поведать историю ее зарождения посредством слоев и своеобразных колец. Их количество свидетельствует о том, сколько раз градинка поднималась в верхние слои атмосферы и спускалась обратно в облако.


От чего зависит размер градин

Скорость восходящих потоков внутри кучевых облаков может варьировать от 80 до 300 км/час. Поэтому сформированные только что льдинки могут непрестанно перемещаться также на большой скорости вместе с потоками воздуха. И чем больше будет скорость их перемещения, тем больше будет размер градин. Проходя многократно через слои атмосферы, где температура изменяется, поначалу маленькие градинки обрастают новыми слоями воды и пыли, формируя порой градины внушительных размеров - диаметром в 8-10 см и весом до 500 грамм.

Одна капля дождя формируется примерно из миллиона переохлажденных частиц воды. Градины, диаметр которых превышает 50 мм, обычно формируются в ячейковых кучевых облаках, где наблюдается сверхмощные восходящие потоки воздуха. Гроза с участием таких дождевых облаков может породить интенсивные шквалы ветра, сильные ливни и смерчи.


Как бороться с градом?

За многолетнюю историю метеонаблюдений люди обнаружили, что градины не образуются при резких звуках. Поэтому наиболее современными средствами борьбы с градом, которые доказали свою эффективность, являются специальные зенитные орудия. При выпуске зарядов из таких орудий по черным, густым облакам достигается сильный звук от их разрыва. Разлетающиеся частицы порохового заряда способствуют формированию капель на сравнительно небольшой высоте. Так, содержащаяся в воздухе влага не формирует град, а проливается на землю дождем.

Еще один популярный способ предотвращения выпадения осадков в виде града - искусственное распыление мелкой пыли. Для этого обычно используются самолеты, которые пролетают непосредственно над грозовым облаком. При распылении микроскопических частиц пыли создается огромное количество градовых зародышей. Эти мельчайшие частички льда перехватывают капли переохлажденной воды. Суть метода состоит в том, что в грозовом облаке запасы переохлажденной воды невелики, а каждый зародыш града препятствует росту других. Поэтому выпадающие на землю градинки имеют небольшой размер и не наносят серьезного урона. Также существует большая вероятность, что вместо града пойдет обычный ливень.

Такой же принцип используется и в третьем способе предотвращения града. Искусственные градовые зародыши могут быть созданы, если внести в переохлажденную часть кучевого облака йодистое серебро, сухую углекислоту или свинец. Из одного грамма этих веществ может быть создано 1012 (триллион) кристалликов льда.

Все эти способы борьбы с градом зависят от метеорологических прогнозов. Важно вовремя укрыть молодые посевы, вовремя собрать урожай, спрятать ценные вещи и предметы, автомобили. Также не следует оставлять на открытой местности домашний скот.


Такие простые меры помогут минимизировать ущерб, причиненный вследствие выпадения града. Их лучше предпринимать незамедлительно, как только передали прогноз по граду или же на горизонте появились угрожающие тучи характерного облика.

Если говорить просто, то град - это разновидность атмосферных осадков, выпадающих в виде частиц льда. Обычно град идет летом во время грозы и ливня из довольно крупных кучево-дождевых облаков.

Тучу, которая несет град, можно распознать еще при ее приближении. Она, как правило, «сидит верхом» на черной и широкой грозовой туче. Обычно градовое облако похоже на высокую скалу с несколькими острыми вершинами. Если на тучу посмотреть через небольшой телескоп или очень мощный бинокль, то можно наблюдать, как в ней пульсируют сильные вертикальные потоки.

«Биография» града отражена в его строении. Крупная градина, разрезанная пополам, состоит подобно луковице из нескольких слоев льда. Иногда градины напоминают слоеный пирог, где чередуются лед и снег. По таким слоям можно вычислить, сколько раз кусочек льда совершал странствие из дождевых облаков в переохлажденные слои атмосферы.

Зарождается град на высоте более 5 км, где летом температура не поднимается выше 15°С. Причиной появления града являются капельки дождя, которые, проходя через слои холодного воздуха, поднимаются, а затем опускаются, все сильнее замерзая и превращаясь в твердые ледяные шарики. Иногда они довольно долго колеблются вверх-вниз, покрываясь все более толстым слоем льда и снега и увеличиваясь в объеме. Когда на градине нарастает достаточное количество льда, ее масса становится столь большой, что с ней уже не справляется сила восходящих воздушных потоков. Тогда «растолстевшие» градины обрушиваются на землю.



Вверх