Строение веществ. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая. Ковалентная связь: полярная и неполярная, свойства и примеры

Далеко не последнюю роль на химическом уровне организации мира играет способ связи структурных частиц, соединения между собой. Подавляющее число простых веществ, а именно неметаллов, имеют ковалентный неполярный тип связи, за исключением Металлы в чистом виде имею особый способ связи, который реализуется с помощью обобществления свободных электронов в кристаллической решетке.

Виды и примеры которых будут указаны ниже, а точнее, локализация или частичное смещение этих связей к одному из участников связывания, объясняется именно электроотрицательной характеристикой того или иного элемента. Смещение происходит к тому атому, у которого она сильнее.

Ковалентная неполярная связь

«Формула» ковалентной неполярной связи проста - два атома одинаковой природы объединяют в совместную пару электроны своих валентных оболочек. Такая пара называется поделённой потому, что в равной степени принадлежит обоим участникам связывания. Именно благодаря обобществлению электронной плотности в виде пары электронов, атомы переходят в более стабильное состояние, так как завершают свой внешний электронный уровень, а «октет» (или «дуплет» в случае простого вещества водорода Н 2 , у него единственная s-орбиталь, для завершения которой нужно два электрона) - это состояние внешнего уровня, к которому стремятся все атомы, так как его заполнение соответствует состоянию с минимальной энергией.

Пример неполярной ковалентной связи есть в неорганике и, как бы странно это ни звучало, но и в органической химии тоже. Такой тип связи присущ всем простым веществам - неметаллам, кроме благородных газов, так как валентный уровень атома инертного газа уже завершен и имеет октет электронов, а значит, связывание с подобным себе для него не имеет смысла и даже менее энергетически выгодно. В органике неполярность встречается в отдельных молекулах определённой структуры и носит условный характер.

Ковалентная полярная связь

Пример неполярной ковалентной связи ограничивается несколькими молекулами простого вещества, в то время как соединений диполей, в которых электронная плотность частично смещена в сторону более электроотрицательного элемента, - подавляющее большинство. Любое соединение атомов с разной величиной электроотрицательности даёт полярную связь. В частности, связи в органике - это ковалентные полярные связи. Иногда ионные, неорганические оксиды также являются полярными, а в солях и кислотах преобладает ионный тип связывания.

Как крайний случай полярного связывания иногда рассматривают и ионный тип соединений. В случае если электроотрицательность одного из элементов значительно выше, чем у другого, электронная пара полностью сдвигается от центра связи к нему. Так происходит разделение на ионы. Тот, кто забирает электронную пару, превращается в анион и получает отрицательный заряд, а теряющий электрон - превращается в катион и становиться положительным.

Примеры неорганических веществ с ковалентным неполярным типом связи

Вещества с ковалентной неполярной связью - это, например, все бинарные молекулы газов: водород (Н - Н), кислород (О = О), азот (в его молекуле 2 атома связаны тройной связью (N ≡ N)); жидкостей и твёрдых веществ: хлора (Cl - Cl), фтор (F - F), бром (Br - Br), йод (I - I). А также сложные вещества, состоящие из атомов различных элементов, но с фактическим одинаковым значением электроотрицательности, например, гидрид фосфора - РН 3 .

Органика и неполярное связывание

Предельно ясно, что все сложные. Встаёт вопрос, как же в сложном веществе может быть неполярная связь? Ответ довольно прост, если немного логически поразмыслить. Если значения электроотрицательности связанных элементов различаются незначительно и не создают в соединении, такую связь можно считать неполярной. Именно такая ситуация с углеродом и водородом: все С - Н связи в органике считаются неполярными.

Пример неполярной ковалентной связи - молекула метана, простейшего Она состоит из одного атома углерода, который, согласно своей валентности, связан одинарными связями с четырьмя атомами водорода. По сути, молекула не является диполем, так как в ней нет локализации зарядов, в чем-то и за счёт тетраэдрического строения. Электронная плотность распределена равномерно.

Пример неполярной ковалентной связи есть и в более сложных органических соединениях. Реализуется он за счёт мезомерных эффектов, то есть последовательного оттягивания электронной плотности, которое быстро угасает по углеродной цепи. Так, в молекуле гексахлорэтана связь С - С неполярная за счёт равномерного оттягивания электронной плотности шестью атомами хлора.

Прочие типы связей

Кроме ковалентной связи, которая, кстати, может осуществляться и по донорно-акцепторному механизму, имеют место ионная, металлическая и водородная связи. Краткие характеристики предпоследних двух представлены выше.

Водородная связь - это межмолекулярное электростатическое взаимодействие, которое наблюдается, если в молекуле есть атом гидрогена и любой другой, имеющий неподелённые электронные пары. Этот тип связывания гораздо слабее, чем остальные, но за счёт того, что в веществе этих связей может образоваться очень много, вносит значительный вклад в свойства соединения.

Единой теории химической связи не существует, условно химическую связь делят на ковалентную (универсальный вид связи), ионную(частный случай ковалентной связи), металлическую и водородную.

Ковалентная связь

Образование ковалентной связи возможно по трем механизмам: обменному, донорно-акцепторному и дативному (Льюиса).

Согласно обменному механизму образование ковалентной связи происходит за счет обобществления общих электронных пар. При этом каждый атом стремится приобрести оболочку инертного газа, т.е. получить завершенный внешний энергетический уровень. Образование химической связи по обменному типу изображают с использованием формул Льюиса, в которых каждый валентный электрон атома изображают точками (рис. 1).

Рис. 1 Образование ковалентной связи в молекуле HCl по обменному механизму

С развитием теории строения атома и квантовой механики образование ковалентной связи представляют, как перекрывание электронных орбиталей (рис. 2).

Рис. 2. Образование ковалентной связи за счет перекрывания электронных облаков

Чем больше перекрывание атомных орбиталей, тем прочнее связь, меньше длина связи и больше ее энергия. Ковалентная связь может образовываться за счет перекрывания разных орбиталей. В результате перекрывания s-s, s-p орбиталей, а также d-d, p-p, d-p орбиталей боковыми лопастями происходит образование – связи. Перпендикулярно линии, связывающей ядра 2-х атомов образуется – связь. Одна – и одна – связь способны образовывать кратную (двойную) ковалентную связь, характерную для органических веществ класса алкенов, алкадиенов и др. Одна – и две – связи образуют кратную (тройную) ковалентную связь, характерную для органических веществ класса алкинов (ацетиленов).

Образование ковалентной связи по донорно-акцепторному механизму рассмотрим на примере катиона аммония:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Атом азота имеет свободную неподеленную пару электронов (электроны не участвующие в образовании химических связей внутри молекулы), а катион водорода свободную орбиталь, поэтому они являются донором и акцептором электронов, соответственно.

Дативный механизм образования ковалентной связи рассмотрим на примере молекулы хлора.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Атом хлора имеет и свободную неподеленную пару электронов и вакантные орбитали, следовательно, может проявлять свойства и донора и акцептора. Поэтому при образовании молекулы хлора, один атом хлора выступает в роли донора, а другой – акцептора.

Главными характеристиками ковалентной связи являются: насыщаемость (насыщенные связи образуются тогда, когда атом присоединяет к себе столько электронов, сколько ему позволяют его валентные возможности; ненасыщенные связи образуются, когда число присоединенных электронов меньше валентных возможностей атома); направленность (эта величина связана с геометрий молекулы и понятием «валентного угла» — угла между связями).

Ионная связь

Соединений с чистой ионной связью не бывает, хотя под этим понимают такое химически связанное состояние атомов, в котором устойчивое электронное окружение атома создается при полном переходе общей электронной плотности к атому более электроотрицательного элемента. Ионная связь возможна только между атомами электроотрицательных и электроположительных элементов, находящихся в состоянии разноименно заряженных ионов – катионов и анионов.

ОПРЕДЕЛЕНИЕ

Ионом называют электрически заряженные частицы, образуемые путем отрыва или присоединения электрона к атому.

При передаче электрона атомы металлов и неметаллов стремятся сформировать вокруг своего ядра устойчивую конфигурацию электронной оболочки. Атом неметалла создает вокруг своего ядра оболочку последующего инертного газа, а атом металла – предыдущего инертного газа (рис. 3).

Рис. 3. Образование ионной связи на примере молекулы хлорида натрия

Молекулы, в которых в чистом виде существует ионная связь встречаются в парообразном состоянии вещества. Ионная связь очень прочная, в связи с этим вещества с этой связью имеют высокую температуру плавления. В отличии от ковалентной для ионной связи не характерны направленность и насыщаемость, поскольку электрическое поле, создаваемое ионами, действует одинаково на все ионы за счет сферической симметрии.

Металлическая связью

Металлическая связь реализуется только в металлах – это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании связи участвуют только валентные электроны атомов металла, принадлежащие всему его объему. В металлах от атомов постоянно отрываются электроны, которые перемещаются по всей массе металла. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые стремятся принять к себе движущиеся электроны. Этот непрерывный процесс формирует внутри металла так называемый «электронный газ», который прочно связывает между собой все атомы металла (рис. 4).

Металлическая связь прочная, поэтому для металлов характерна высокая температура плавления, а наличие «электронного газа» придают металлам ковкость и пластичность.

Водородная связь

Водородная связь – это специфическое межмолекулярное взаимодействие, т.к. ее возникновение и прочность зависят от химической природы вещества. Она образуется между молекулами, в которых атом водорода связан с атомом, обладающим высокой электроотрицательностью (O, N, S). Возникновение водородной связи зависит от двух причин, во-первых, атом водорода, связанный с электроотрицательным атомом не имеет электронов и может легко внедряться в электронные облака других атомов, а, во-вторых, обладая валентной s-орбиталью, атом водорода способен принимать неподеленную пару электронов электроотрицательного атома и образовывать с ним связь по донорно акцепторному механизму.

Рис. 2.1. Образование молекул из атомов сопровождается перераспределением электронов валентных орбиталей и приводит к выигрышу в энергии, так как энергия молекул оказывается меньше энергии невзаимодействующих атомов. На рисунке представлена схема образования неполярной ковалентной химической связи между атомами водорода.

§2 Химическая связь

В обычных условиях молекулярное состояние устойчивее, чем атомное (рис.2.1).Образование молекул из атомов сопровождается перераспределением электронов валентных орбиталей и приводит к выигрышу в энергии, так как энергия молекул оказывается меньше энергии невзаимодействующих атомов (приложение 3). Силы, удерживающие атомы в молекулах, получили обобщенное названиехимической связи .

Химическая связь между атомами осуществляется валентными электронами и имеет электрическую природу . При этом различают четыре основных типа химической связи:ковалентную ,ионную, металлическую иводородную .

1 Ковалентная связь

Химическая связь, осуществляемая электронными парами, называется атомной, или ковалентной . Соединения с ковалентными связями называются атомными, или ковалентными .

При возникновении ковалентной связи происходит сопровождающееся выделением энергии перекрытие электронных облаков взаимодействующих атомов (рис.2.1). При этом между положительно заряженными атомными ядрами возникает облако с повышенной плотностью отрицательного заряда. Благодаря действию кулоновских сил притяжения между разноименными зарядами увеличение плотности отрицательного заряда благоприятствует сближению ядер.

Ковалентная связь образуется за счет непарных электронов внешних оболочек атомов . При этом электроны с противоположными спинами образуютэлектронную пару (рис.2.2), общую для взаимодействующих атомов. Если между атомами возникла одна ковалентная связь (одна общая электронная пара), то она называется одинарной, две- двойной и т.д.

Мерой прочности химической связи служит энергия E св, затрачиваемая на разрушение связи (выигрыш в энергии при образовании соединения из отдельных атомов). Обычно эту энергию измеряют в расчете на 1 мольвещества и выражают в килоджоулях на моль (кДж∙моль –1). Энергия одинарной ковалентной связи лежит в пределах 200–2000 кДжмоль –1 .

Рис. 2.2. Ковалентная связь – наиболее общий вид химической связи, возникающей за счет обобществления электронной пары посредством обменного механизма (а) , когда каждый из взаимодействующих атомов поставляет по одному электрону, или посредством донорно-акцепторного механизма (б) , когда электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору).

Ковалентная связь обладает свойствами насыщаемости и направленности . Под насыщаемостью ковалентной связи понимается способность атомов образовывать с соседями ограниченное число связей, определяемое числом их неспаренных ва­лентных электронов. Направленность ковалентной связи отражает тот факт, что силы,удерживающие атомы друг возле друга, направлены вдоль прямой, соединяющей атомные ядра. Кроме того, ковалентная связь может быть полярной или неполярной .

В случае неполярной ковалентной связи электронное облако, образованное общей парой электронов, распределяется в пространстве симметрично относительно ядер обоих атомов. Неполярная ковалентная связь образуется между атомами простых веществ, например, между одинаковыми атомами газов, образующих двухатомные молекулы (О 2 , Н 2 , N 2 ,Cl 2 и т.д.).

В случае полярной ковалентной связи электронное облако связи смещено к одному из атомов. Образование полярной ковалентной связи между атомами характерно для сложных веществ. Примером могут служить молекулы летучих неорганических соединений: HCl, H 2 O, NH 3 и др.

Степень смещения общего электронного облака к одному из атомов при образовании ковалентной связи (степень полярности связи ) определяется, главным образом, зарядом атомных ядер и радиусом взаимодействующих атомов .

Чем больше заряд атомного ядра, тем сильнее оно притягивает к себе облако электронов. В то же время чем больше радиус атома, тем слабее внешние электроны удерживаются вблизи атомного ядра. Совокупное действие двух этих факторов и выражается в различной способности разных атомов «оттягивать» к себе облако ковалентной связи.

Способность атома в молекуле притягивать к себе электроны получила название электроотрицательности . Таким образом, электроотрицательность характеризует способность атома к поляризации ковалентной связи:чем больше электроотрицательность атома, тем сильнее смещено к нему электронное облако ковалентной связи .

Для количественной оценки электроотрицательности предложен ряд методов. При этом наиболее ясный физический смысл имеет метод, предложенный американским химиком Робертом С. Малликеном, который определил электроотрицательность атома как полусумму его энергииE e сродства к электрону и энергииE i ионизации атома:

. (2.1)

Энергией ионизации атома называется та энергия, которую нужно затратить, чтобы «оторвать» от него электрон и удалить его на бесконечное расстояние. Энергию ионизации определяют при помощи фотоионизации атомов или путем бомбардировки атомов электронами, ускоренными в электрическом поле. То наименьшее значение энергии фотонов или электронов, которое становится достаточным для ионизации атомов, и называют их энергией ионизацииE i . Обычно эта энергия выражается в электрон-вольтах (эВ): 1 эВ = 1,610 –19 Дж.

Охотнее всего отдают внешние электроны атомы металлов , которые содержат на внешней оболочке небольшое число непарных электронов (1, 2 или 3). Эти атомы обладают наименьшей энергией ионизации. Таким образом, величина энергии ионизации может служить мерой большей или меньшей «металличности» элемента: чем меньше энергия ионизации, тем сильнее должны быть выраженыметаллические свойства элемента.

В одной и той же подгруппе периодической системы элементов Д.И.Менделе­ева с увеличением порядкового номера элемента его энергия ионизации уменьшается (табл.2.1), что связано с увеличением атомного радиуса (табл.1.2), а, следовательно, с ослаблением связи внешних электронов с ядром. У элементов одного периода энергия ионизации возрастает с увеличением порядкового номера. Это связано с уменьшением атомного радиуса и увеличением заряда ядра.

Энергия E e , которая выделяется при присоединении электрона к свободному атому, называетсясродством к электрону (выражается также в эВ). Выделение (а не поглощение) энергии при присоединении заряженного электрона к некоторым нейтральным атомам объясняется тем, что наиболее устойчивыми в природе являются атомы с заполненными внешними оболочками. Поэтому тем атомам, у которых эти оболочки «немного не заполнены» (т.е. до заполнения не хватает 1, 2 или 3 электронов), энергетически выгодно присоединять к себе электроны, превращаясь в отрицательно заряженные ионы 1 . К таким атомам относятся, например, атомы галогенов (табл.2.1) – элементов седьмой группы (главной подгруппы) периодической системы Д.И.Менделеева. Сродство к электрону атомов металла, как правило, равно нулю или отрицательно, т.е. им энергетически невыгодно присоединение дополнительных электронов, требуется дополнительная энергия, чтобы удержать их внутри атомов. Сродство к электрону атомов неметаллов всегда положительно и тем больше, чем ближе к благородному (инертному) газу расположен неметалл в периодической системе. Это свидетельствует об усилениинеметаллических свойств по мере приближения к концу периода.

Из всего сказанного ясно, что электроотрицательность (2.1) атомов возрастает в направлении слева направо для элементов каждого периода и уменьшается в направлении сверху вниз для элементов одной и той же группы периодической системы Менделеева. Нетрудно, однако, понять, что для характеристики степени полярности ковалентной связи между атомами важным является не абсолютное значение электроотрицательности, а отношение электроотрицательностей атомов, образующих связь. Поэтому на практике пользуются относительными значениями электроотрицательности (табл.2.1),принимая за единицу электроотрицательность лития.

Для характеристики полярности ковалентной химической связи используют разность относительных электроотрицательностей атомов . Обычно связь между атомами А и В считается чисто ковалентной, если | A B |0.5.

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ) невозможен. В этом случае для выполнения необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

H 1s 1 — один электрон

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Образование ковалентной связи

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора - восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О 2 или азота N 2 . Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).


В таблице ниже перечислены основные типы связей и примеры веществ:


Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.


Ковалентная, ионная и металлическая – три основных типа химических связей.

Познакомимся подробнее с ковалентной химической связью . Рассмотрим механизм ее возникновения. В качестве примера возьмем образование молекулы водорода:

Сферически симметричное облако, образованное 1s-электроном, окружает ядро свободного атома водорода. Когда атомы сближаются до определенного расстояния, происходит частичное перекрывание их орбиталей (см. рис.), в результате чего появляется молекулярное двухэлектронное облако между центрами обоих ядер, которое обладает максимальной электронной плотностью в пространстве между ядрами. При увеличении же плотности отрицательного заряда происходит сильное возрастание сил притяжения между молекулярным облаком и ядрами.

Итак, мы видим, что ковалентная связь образуется путем перекрывания электронных облаков атомов, которое сопровождается выделением энергии. Если расстояние между ядрами у сблизившихся до касания атомов составляет 0,106 нм, тогда после перекрывания электронных облаков оно составит 0,074 нм. Чем больше перекрывание электронных орбиталей, тем прочнее химическая связь.

Ковалентной называется химическая связь, осуществляемая электронными парами . Соединения с ковалентной связью называют гомеополярными или атомными .

Существуют две разновидности ковалентной связи : полярная и неполярная .

При неполярной ковалентной связи образованное общей парой электронов электронное облако распределяется симметрично относительно ядер обоих атомов. В качестве примера могут выступать двухатомне молекулы, которые состоят из одного элемента: Cl 2 , N 2 , H 2 , F 2 , O 2 и другие, электронная пара в которых в принадлежит обоим атомам в одинаковой мере.

При полярной ковалентной связи электронное облако смещено к атому с большей относительной электроотрицательностью. Например молекулы летучих неорганических соединений таких как H 2 S, HCl, H 2 O и другие.

Образование молекулы HCl можно представить в следущем виде:

Т.к. относительная электроотрицательность атома хлора (2,83) больше, чем атома водорода (2,1), электронная пара смещается к атому хлора.

Помимо обменного механизма образования ковалентной связи – за счет перекрывания, также существует донорно-акцепторный механизм ее образования. Это механизм, при котором образование ковалентной связи происходит за счет двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора). Давайте рассмотрим пример механизма образования аммония NH 4 + .В молекуле аммиака у атома азота есть двухэлектронное облако:

Ион водорода имеет свободную 1s-орбиталь, обозначим это как .

В процессе образования иона аммония двухэлектронное облако азота становится общим для атомов азота и водорода, это значит оно преобразуется в молекулярное электронное облако. Следовательно, появляется четвертая ковалентная связь. Можно представить процесс образования аммония такой схемой:

Заряд иона водорода рассредоточен между всеми атомами, а двухэлектронное облако, которое принадлежит азоту, становится общим с водородом.

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



Вверх