Молекулярная физика. Испарение и конденсация. Поглощение энергии при испарении жидкости и выделение ее при конденсации пара

1. Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарения и кипения.

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре .

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Иапример, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

2. Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным .

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром .

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

3. В воздухе всегда содержится водяной пар, являющийся продуктом испарения воды. Содержание водяного пара в воздухе характеризует его влажность.

Абсолютной влажностью воздуха ​\((\rho) \) ​ называют массу водяного пара, содержащегося в 1 м 3 воздуха, или плотность водяного пара, содержащегося в воздухе.

Если относительная влажность равна 9,41·10 -3 кг/м 3 , то это означает, что в 1 м 3 содержится 9,41·10 -3 кг водяного пара.

Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью .

Относительной влажностью воздуха ​\((\varphi) \) ​ называют величину, равную отношению плотности водяного пара ​\((\rho) \) ​, содержащегося в воздухе (абсолютной влажности), к плотности насыщенного водяного пара ​\((\rho_0) \) ​ при этой температуре:

\[ \varphi=\frac{\rho}{\rho_0}100\% \]

​Обычно относительную влажность выражают в процентах.

При понижении температуры ненасыщенный нар может превратиться в насыщенный. Примером такого превращения является выпадение росы и образование тумана. Так, летним днём при температуре 30 °С плотность водяного пара равна 12,8·10 -3 кг/м 3 . Этот водяной пар является ненасыщенным. При понижении вечером температуры до 15 °С он уже будет насыщенным, и выпадет роса.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Для измерения влажности воздуха используют прибор, называемый психрометром .

Психрометр состоит из двух термометров, один из которых сухой, а другой - влажный (рис. 74). Термометры прикреплены к таблице, в которой по вертикали указана температура, которую показывает сухой термометр, а по горизонтали - разность показаний сухого и влажного термометров. Определив показания термометров, по таблице находят значение относительной влажности воздуха.

Например, температура, которую показывает сухой термометр, 20 °С, показание влажного термометра — 15 °С. Разность показаний 5 °С. По таблице находим значение относительной влажности ​\(\varphi \) ​ = 59%.

4. Второй процесс парообразования - кипение . Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением . Температуру, при которой жидкость кипит, называют температурой кипения .

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

На рисунке 75 приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АБ), кипения (БВ), нагревания пара (ВГ), охлаждения пара (ГД), конденсации (ДЕ) и последующего охлаждения (ЕЖ).

5. Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования .

Удельной теплотой парообразования ​\((L) \) ​ называют величину, равную отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования - ​\([L] \) ​ = Дж/кг.

Чтобы рассчитать количество теплоты ​\(Q \) ​, которое необходимо сообщить веществу массой ​\(m \) ​ для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования ​\((L) \) ​ умножить на массу вещества: ​\(Q=Lm \) ​.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

Часть 1

1. Испарение и кипение - два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они

А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Испарение и кипение - два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что

А. Кипение происходит при определённой температуре, а испарение - при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение - во всём объёме жидкости.

Правильным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании вода превращается в пар той же температуры. При этом

1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами

4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?

1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась

5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?

1) АВ
2) ВС
3) CD
4) DE

6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени ​\(\tau_1 \) ​?

1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть - в газообразном
4) часть воды в жидком состоянии, часть - в кристаллическом

7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?

1) АВ
2) ВС
3) CD
4) DE

8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?

1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж

9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см 3 . Во вторник она увеличилась и стала равной 15,4 г/см 3 . Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см 3 ?

1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала

10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10 -3 кг/м 3 , а плотность насыщенного пара при этой температуре 30·10 -3 кг/м 3 ?

1) 60%
2) 30%
3) 18 %
4) 1,7 %

11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины

ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка

12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.

1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени ​\(0-t_1 \) ​ оба вещества находились в жидком состоянии

Часть 2

13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Ответы

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.


Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.


Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.


Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.

  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.


Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.

1. Какое явление называют испарением?

Испарение — это парообразование, происходящее с поверхности жидкости.

2. Почему испарение жидкости происходит при любой температуре?

Молекулы жидкости непрерывно движутся с разными скоростями. Если какая-нибудь достаточно «быстрая» молекула окажется у поверхности жидкости, то она может преодолеть притяжение соседних мокулел и вылететь из жидкости. Вылетевшие с поверхности жидкости молекулы образуют над ней пар. У оставшихся молекул жидкости при соударениях меняются скорости. Некоторые из мокул приобретают при этом скорость, достаточную для того, чтобы, оказавшись у поверхности, вылететь из жидкости. Этот процесс продолжается, поэтому жидкость испаряется постепенно. Так как некоторое число быстро движущихся молекул всегда имеется в жидкости, то испарение должно происходить при любой температуре.


3. От чего зависит скорость испарения жидкости?

Скорость испарения зависит от рода жидкости, ее площади поверхности, наличия либо отсутствия ветра.

4. Почему испарение происходит тем быстрее, чем выше температура жидкости?

Чем выше температура жидкости, тем больше в ней быстро движущихся молекул. Поэтому испарение происходит тем быстрее, чем выше температура жидкости.

5. Как зависит скорость испарения жидкости от площади её поверхности?

Чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает в воздух (испарение происходит быстрее).

6. Какой пар называется насыщенным?

Насыщенный пар — это пар, находящийся в динамическом равновесии со всей жидкостью.

7. Какой пар называется ненасищенным?

Ненасыщенный пар — это пар, который не находится в состоянии равновесия со своей жидкостью.

8. Почему испарение жидкости происходит быстрее, если над её поверхностью дует ветер?

В открытом сосуде масса жидкости вследствие испарения постенно уменьшается. Это связано с тем, что большинство молекул пара рассеивается в воздухе, не возвращаясь в жидкость. Но небольшая часть их возвращается обратно в жидкость, замедляя тем самым испарение. Поэтому при ветре, который уносит молекулы пара, испарение жидкости происходит быстрее.

Где быстрее испариться вода?

Правильно, в повышенном температурном режиме. Воздействие повышенной температуры на молекулы жидкости заставляет ускорить их движение, тем самым значительно ускоряется процесс испарения. Что касается холода, то вода преобразуется в лед, а после – в пар.

Если открытую емкость с жидкостью оставить на открытом пространстве, то спустя краткий промежуток времени, вода испариться. Многое будет зависеть от того, где именно была оставлена емкость, под влиянием солнечных лучей или в темном, прохладном месте. Конечный итог будет идентичным, но время испарения жидкости замедлиться. Это обусловлено тем, что испарение – естественный процесс, который происходит в любой среде и емкости и человеческое тело – не исключение.

Потоотделение – процесс, при котором влага выделяется из человеческого организм и через краткое время испаряется с поверхности кожного покрова.

Переход из жидкого состояния в газообразное обусловлено тем, что в воде присутствует кинетическая энергия, способствующая ускорению движения молекул – элементарных частиц любого вещества. Кинетические энергия, присутствующая в любой жидкости, стимулирует движение молекул и позволяет им преодолевать межмолекулярное притяжение. К примеру, если кружку с водой накрыть бумагой, то через час она станет мокрой. Испарение происходит даже в закрытом пространстве, но существуют факторы, влияющие на скорость продвижения этого процесса.

Физические аспекты, способные повлиять на скорость испарения, это:

  • Температура помещения, в котором происходит этот процесс. Иное дело – естественное испарение, происходящее в окружающем мире;
  • Вентиляция. Под влиянием ветра, жидкость преобразуется в пар быстрее, соответствуя пропорции ½ (при усилении ветра (м/с) скорость преобразования воды в пар увеличивается вдвое);
  • Площадь, с которой выделяется жидкость. Для наглядного примера, возьмем стакан и плоскую тарелку. Как известно, испарение – это процесс, при котором испаряется поверхность жидкости. Чтобы нижним молекулам преодолеть межмолекулярное притяжение и покинуть поверхность емкости, им необходимо подождать, пока верхний ряд частиц осуществит это действие. Иными словами, чем больше площадь, тем быстрее происходит испарение;
  • Плотность. Плотно прилегающим молекулам сложнее преодолевать межмолекулярное притяжение, так как они борются с притяжением идентичных частиц. Из этого следует вывод, что большая плотность способствует замедлению испарения.

Почему вода в жидком состоянии испаряется быстрее льда?

Ответ прост – температура и состояние молекул. В жидком состоянии, молекулы воды средне активны (в виде пара их активность достигает пика).


ходясь в состоянии льда, элементарные частицы замирают, их движение замедляется вдвое, что значительно воспрепятствует преодолению межмолекулярного притяжения. По точным данным ученых в области физики, за один час, с поверхности воды, расположенной на плоском предмете выходит порядка 1249 молекул воды. Со льдом, ситуация крайне противоположна. За те же 60 минут, с емкости аналогичной площади выходит лишь 317 молекул. Можно сделать вывод, что вода, находясь в состоянии льда, испаряется в четыре раза медленнее.

Еще один фактор – температура жидкости.
Разберем на примере воды и метилового спирта. Метил выступает горючей жидкостью, но находясь в жидком состоянии, он испаряется в стандартных пропорциях (1249 молекул/час). Но стоит его поджечь, как процесс ускоряется вдвое. Дело в том, что над точкой возгорания образуется воздушная воронка с высоким давлением, которая создает беспрестанные циркулирующие потоки воздуха. Попадая в них, преобразовавшиеся в пар молекулы спирта, быстрее покидают первоначальное место. Чем сильнее воздушный поток, тем меньше молекул жидкости вернется к первобытному источнику Относительно, первичный объем емкости быстрее уменьшится.

Проведем эксперимент.

Возьмем пластмассовую бутылку с водой и поставим ее на открытую местность под влияние ультрафиолета. Как выяснилось ранее, под воздействием высокой температуры, вода испаряется быстрее. Но почему жидкость в бутылке будет преобразовываться в пар медленнее? Выходящие молекулы не смогут «протиснуться» в узкое горлышко разом, поэтому они осядут на стенки бутылки и скатятся вниз, в общую массу. Из этого следует еще один вывод – воздействие температуры не имеет силы, если жидкость содержится в крупной емкости, но с небольшим выходом (горлышком).

При вылете из жидкости молекулы преодолевают силы притяжения со стороны оставшихся молекул, т. е. совершают работу против этих сил. Не все молекулы жидкости могут совершить необходимую работу, а только те из них, которые обладают достаточной для этого кинетической энергией, достаточной скоростью.

Но если из жидкости выходят при испарении наиболее быстрые молекулы, то средняя скорость остальных молекул жидкости становится меньше, - следовательно, и средняя кинетическая энергия остающихся в жидкости молекул уменьшается. Это означает, что внутренняя энергия испаряющейся жидкости уменьшается. Поэтому, если нет притока энергии к жидкости извне, испаряющаяся жидкость охлаждается.

Охлаждение жидкости при испарении можно наблюдать на опыте. Для этого нужно обмотать шарик термометра ватой (или кусочком материи) и полить ее эфиром. Быстро испаряющийся эфир отнимает часть внутренней энергии от шарика термометра, вследствие чего температура последнего понижается. Если эфиром смочить руку, то мы будем ощущать охлаждение руки.

Выходя из воды даже в жаркий день, мы чувствуем холод. Вода, испаряясь с поверхности нашего тела, отнимает от него некоторое количество теплоты.

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно и температура воды поддерживается постоянной за счет количества теплоты, поступающего из окружающего воздуха. Значит, чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Так, чтобы испарить воду массой 1 кг при температуре 35°С, требуется 2,4 10 6 Дж, а для испарения эфира массой 1 кг, взятого при той же температуре (35 °С),- 0,4 10 6 Дж энергии.

Испарение имеет большое значение в жизни животных. Затруднение испарения нарушает теплоотдачу и может вызвать перегревание тела.

Мы говорили, что процесс перехода молекул из пара в жидкость называют конденсацией. Конденсация пара сопровождается выделением энергии. Летним вечером, когда воздух становится холоднее, выпадает роса. Это водяной пар, находившийся в воздухе, при охлаждении воздуха оседает на траве и листьях в виде маленьких капелек воды.

Конденсацией пара объясняется образование облаков. Пары воды, поднимающиеся над землей, образуют в верхних, более холодных слоях воздуха облака, состоящие из мельчайших капелек воды.

Вопросы.

  1. Какую работу совершают молекулы, выходящие из жидкости при испарении?
  2. Как объяснить понижение температуры жидкости при ее испарении?
  3. Как можно на опыте показать охлаждение жидкости при испарении?
  4. Как можно объяснить, что при одних и тех же условиях одни жидкости испаряются быстрее , другие - медленнее?
  5. При каких условиях происходит конденсация пара?
  6. Какие явления природы объясняются конденсацией пара?

Упражнения.

  1. В какую погоду скорее просыхают лужи от дождя: в тихую или ветреную? в теплую или холодную? Как это можно объяснить?
  2. Почему горячий чай остывает скорее, если на него дуют?
  3. Выступающий в жару на теле пот охлаждает тело. Почему?
  4. Почему в сухом воздухе переносить жару легче, чем в сыром?
  5. Чтобы получить прохладную воду в летнюю жару, ее наливают в сосуды, изготовленные из слабообожженной глины, сквозь которую вода медленно просачивается. Вода в таких сосудах холоднее окружающего воздуха. Почему?
  6. Небольшое количество воды находится в стакане и такое же количество воды находится в блюдце. Где быстрее вода испарится? Почему?
  7. На стекло или доску кисточкой наносят мазки различных жидкостей: эфира, спирта, воды и масла. Наблюдая за мазками, замечают, что жидкости испаряются с разной скоростью. Проделайте такой опыт и объясните его.
  8. Для чего летом после дождей или полива приствольные круги плодовых деревьев покрывают слоем перегноя, навоза или торфа?

При любой температуре с поверхности жидкости вылетает часть молекул, образуя над ней пар. Процесс перехода вещества из жидкого состояния в газообразное называется парообразованием. Парообразование, происходящее при любых температурах с открытой поверхности жидкости, называется испарением. Его скорость зависит от рода жидкости, величины ее свободной поверхности, температуры, внешнего давления и наличия над жидкостью потока воздуха, уносящего пар.

Уход молекул с поверхности жидкости при испарении связан с затратой внутренней энергии на работу выхода А в, которую молекуле необходимо совершить для преодоления сил молекулярного притяжения и сил внешнего давления. Эта работа совершается за счет кинетической энергии молекул. Молекула покинет жидкость только в том случае, если ее кинетическая энергия будет равна или больше работы выхода: (m - масса молекулы, v - составляющая скорости молекулы, направленная перпендикулярно к поверхности жидкости). При парообразовании жидкость охлаждается, так как вылетевшие молекулы уносят часть ее внутренней энергии.

Чтобы испарение жидкости происходило без изменения ее температуры, жидкости необходимо сообщать энергию. Скалярная величина, измеряемая количеством энергии, необходимой для превращения единицы массы жидкости в пар при постоянной температуре, называется удельной теплотой парообразования.

Для превращения единицы массы жидкости в пар при постоянной температуре ей сообщается количество теплоты, равное удельной теплоте парообразования. При парообразовании происходит увеличение объема вещества. Так, пары воды при, 100° С занимают объем почти в 1700 раз больше объема той же массы воды при 100° С. Поэтому вещество, испаряясь, часть удельной теплоты парообразования затрачивает на совершение работы против силы внешнего давления, а часть - на увеличение его внутренней потенциальной энергии. Поэтому при одинаковой температуре внутренняя энергия единицы массы вещества в газообразном состоянии больше, чем в жидком. Так, 1 кг водяного пара при 100° С имеет на 2*10 6 дж внутренней энергии больше, чем 1 кг воды при той же температуре.

Опыты показали, что удельная теплота парообразования вещества зависит от его температуры. Чем выше температура вещества, тем меньше его удельная теплота парообразования. Например, при 0°С удельная теплота парообразование воды 2499 кдж / кг , при 50° С - 2385 кдж / кг, при 100° С - 2257 кдж / кг, при 200°С - 1943 кдж / кг. Уменьшение теплоты парообразования объясняется тем, что чем выше температура вещества, тем больше кинетическая энергия его молекул и тем меньше энергии надо дополнительно сообщить жидкости, чтобы ее молекулы вылетели в окружающую среду.

Наименование удельной теплоты парообразования r кг / дж. Для превращения m кг массы жидкости в пар надо определенное количество энергии, в частности количество теплоты Q = rm.

Допустим, что жидкость испаряется в закрытом сосуде. Часть молекул пара вследствие теплового движения, приблизившись к поверхности жидкости, возвращается в нее. В закрытом сосуде одновременно происходит и процесс испарения и процесс конденсации Если число молекул, вылетевших из жидкости, больше числа молекул, возвратившихся в нее, то пар над жидкостью называется ненасыщенным. Опыты с ненасыщенными парами показали, что они подчиняются газовым законам.

В процессе испарения и конденсации наступает такой момент, начиная с которого число молекул, вылетевших из жидкости в единицу времени, окажется равным числу молекул, возвращающихся обратно в жидкость, то есть наступит динамическое равновесие между жидкостью и паром. Пар, находящийся в динамическим равновесием со своей жидкостью, называется насыщенным паром. Он может быть насыщенным не только в закрытом сосуде, но и в атмосфере. Так, при тумане пары воды в воздухе насыщены.

Откроем кран А (рис. 35) и впустим в колбу несколько капель эфира, который испаряется, образуя ненасыщенный пар. Чем больше эфира мы впускаем в колбу, тем больше становится давление его ненасыщенного пара. Эфир впускаем до тех пор, пока на дне колбы окажется немного жидкого эфира. Появление последнего указывает на то, что пары эфира стали насыщенными. С этого момента манометр перестает показывать увеличение давления - оно стало постоянным, несмотря на последующее добавление эфира. Следовательно, давление и плотность паров при данной температуре наибольшее, когда пар насыщен.

Если в колбу помещать поочередно различные жидкости и измерять давление их насыщенных паров, то оказывается, что при одной и той же температуре давление насыщенных паров разных жидкостей различно. Наибольшим давлением обладают пары эфира, меньшим - пары спирта и еще меньшим - пары воды.

При температуре 20° С давление насыщенных паров этих жидкостей равно (в мм рт. ст.):


Выясним, зависит ли давление насыщенного пара при постоянной температуре от его объема. Под поршнем в цилиндре, соединенном с манометром, находится жидкость и ее насыщенный пар (рис. 36). Изменяя его объем перемещением поршня вверх, а затем вниз, по показанию манометра видим, что при постоянной температуре давление насыщенного пара от объема не зависит, и оно при данной температуре для данной жидкости есть величина постоянная. Это означает, что насыщенные пары закону Бойля-Мариотта не подчиняются. Так, манометр парового котла при данной температуре показывает всегда одно и то же давление, независимо от того, какой объем занимает в нем насыщенный пар.

Объясняется это тем, что при изменении объема насыщенного пара происходит изменение его массы. Причувеличении объема масса пара увеличивается (происходит дополнительное испарение жидкости), при уменьшении объема масса пара уменьшается (часть его конденсируется).

Выясним, зависит ли при постоянном объеме давление насыщенного пара от его температуры. Нагреем насыщенный пар в колбе (см. рис. 35), поместив ее в горячую воду. Видим, с повышением температуры давление насыщенного пара увеличивается. Например, давление насыщенного пара воды при 50° С равно 92,5 мм рт. ст. , а при 100° С - 760 мм рт. ст.

Опыты и расчеты по изменению давления насыщенного пара от нагревания показывают, что давление увеличивается во много раз больше, чем следовало бы по закону Шарля, т. е. зависимость давления от температуры не подчиняется данному закону. Объясняется это тем, что давление насыщенного пара при нагревании возрастает, во-первых, вследствие увеличения средней кинетической энергии молекул этого пара и, во-вторых, из-за увеличения концентрации молекул пара, т. е. увеличения общей массы молекул.

Пока пар остается насыщенным, изменение его температуры или объема всегда сопровождается изменением массы пара, т.е. парообразованием, или конденсацией.

Свойство насыщенных паров воды увеличивать свое давление с повышением температуры применяется в паровых котлах для получения пара, имеющего большое давление, например 100 ат, при температуре кипения воды 310° С. Для использования пара в паровых машинах его отводят из котла, нагревают, превращают в ненасыщенный. Такой пар называется перегретым, он обладает большим запасом внутренней энергии. Если пар не перегрет, то он содержит капельки жидкости.

Получив в пробирке пары эфира, начнем охлаждать их, поместив ее в смесь льда и соли. На стенках пробирки появляется налет жидкого эфира, так как при охлаждении его пары превратились в жидкость. Существует два способа обращения пара в жидкость: увеличение давления на пар, сжатие его (см. рис.36) и понижение температуры пара, охлаждение его. Опыты показывают, что и газы можно превратить в жидкость (сжижение газов). Для этого их надо одновременно и сжимать и охлаждать, пока они не превратятся в жидкость.



Добавить свою цену в базу

Комментарий

Испарение жидкости происходит при любой температуре и тем быстрее, чем выше температура, больше площадь свободной поверхности испаряющейся жидкости и быстрее удаляются образовавшиеся над жидкостью пары.

При некоторой определенной температуре, зависящей от природы жидкости и давления, под которым она находится, начинается парообразование во всей массе жидкости. Этот процесс называется кипением.

Это процесс интенсивного парообразования не только со свободной поверхности, но и в объеме жидкости. В объеме образуются пузыри, заполненные насыщенным паром. Они поднимаются вверх под действием выталкивающей силы и разрываются на поверхности. Центрами их образования являются мельчайшие пузырьки посторонних газов или частиц различных примесей.

Если пузырек имеет размеры порядка нескольких миллиметров и более, то вторым слагаемым можно пренебречь и, следовательно, для больших пузырьков при неизменном внешнем давлении жидкость закипает, когда давление насыщенного пара в пузырьках становится равным внешнему давлению.

В результате хаотического движения над поверхностью жидкости молекула пара, попадая в сферу действия молекулярных сил, вновь возвращается в жидкость. Этот процесс называется конденсацией.

Испарение и кипение

Испарение и кипение – это два способа перехода жидкости в газ (пар). Сам процесс такого перехода называется парообразованием. То есть испарение и кипение – это способы парообразования. Между этими двумя способами есть существенные отличия.

Испарение происходит только с поверхности жидкости. Оно является результатом того, что молекулы любой жидкости постоянно перемещаются. Причем скорость у молекул разная. Молекулы с достаточно большой скоростью, оказавшись на поверхности, могут преодолеть силу притяжения других молекул и оказаться в воздухе. Молекулы воды, находящиеся по отдельности в воздухе, как раз и образуют пар. Увидеть глазами пар невозможно. То, что мы видим, как водяной туман, это уже результат конденсации (обратный парообразованию процесс), когда при охлаждении пар собирается в виде мельчайших капелек.

В результате испарения сама жидкость охлаждается, так как ее покидают наиболее быстрые молекулы. Как известно, температура как раз определяется скоростью движения молекул вещества, то есть их кинетической энергией.

Скорость испарения зависит от многих причин. Во-первых, она зависит от температуры жидкости. Чем температура выше, тем испарение быстрее. Это и понятно, так как молекулы двигаются быстрее, а значит, им легче вырваться с поверхности. Скорость испарения зависит от вещества. У одних веществ молекулы притягиваются сильнее, и следовательно, труднее вылетают, а у других – слабее, и следовательно, легче покидают жидкость. Испарение также зависит от площади поверхности, насыщенности воздуха паром, ветра.

Самое главное, что отличает испарение от кипения, это то, что испарение протекает при любой температуре, и оно протекает только с поверхности жидкости.

В отличие от испарения, кипение протекает только при определенной температуре. Для каждого вещества, находящегося в жидком состоянии, характерна своя температура кипения. Например, вода при нормальном атмосферном давлении кипит при 100 °C, а спирт при 78 °C. Однако с понижением атмосферного давления температура кипения всех веществ немного понижается.

При кипении из воды выделяется растворенный в ней воздух. Поскольку сосуд обычно нагревают снизу, то в нижних слоях воды температура оказывается выше, и пузыри сначала образуются именно там. В эти пузыри испаряется вода, и они насыщаются водяным паром.

Так как пузыри легче самой воды, то они поднимаются вверх. Из-за того, что верхние слои воды не прогрелись до температуры кипения, пузыри остывают и пар в них обратно конденсируется в воду, пузыри становятся тяжелее и снова опускаются.

Когда все слои жидкости прогреваются до температуры кипения, то пузыри уже не опускаются, а поднимаются на поверхность и лопаются. Пар из них оказывается в воздухе. Таким образом, при кипении процесс парообразования происходит не на поверхности жидкости, а по всей ее толще в образующихся пузырьках воздуха. В отличие от испарения, кипение возможно лишь при определенной температуре.

Следует понимать, что когда жидкость кипит, то происходит и обычное испарение с ее поверхности.

От чего зависит скорость испарения жидкости?

Мерой скорости испарения является количество вещества, улетающего в единицу времени с единицы свободной поверхности жидкости. Английский физик и химик Д. Дальтон в начале XIX в. нашел, что скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испаряющейся жидкости и действительным давлением того реального пара, который над жидкостью имеется. Если жидкость и пар находятся в равновесии, то скорость испарения равна нулю. Точнее, оно происходит, но с той же скоростью происходит и обратный процесс – конденсация (переход вещества из газообразного или парообразного состояния в жидкое). Скорость испарения зависит также от того, происходит ли оно в спокойной атмосфере или движущейся; скорость его увеличивается, если образующийся пар сдувается потоком воздуха или откачивается насосом.

Если испарение происходит из жидкого раствора, то разные вещества испаряются с разной скоростью. Скорость испарения данного вещества уменьшается с увеличением давления посторонних газов, например воздуха. Поэтому испарение в пустоту происходит с наибольшей скоростью. Напротив, добавляя в сосуд посторонний, инертный газ, можно очень сильно замедлить испарение.

Иногда испарением называют также сублимацию, или возгонку, т. е. переход твердого вещества в газообразное состояние. Почти все их закономерности действительно похожи. Теплота сублимации больше теплоты испарения приблизительно на теплоту плавления.

Итак, скорость испарения зависит от:

  1. Рода жидкости. Быстрее испаряется та жидкость, молекулы которой притягиваются друг к другу с меньшей силой. Ведь в этом случае преодолеть притяжение и вылететь из жидкости может большее число молекул.
  2. Испарение происходит тем быстрее, чем выше температура жидкости. Чем выше температура жидкости, тем больше в ней число быстро движущихся молекул, способных преодолеть силы притяжения окружающих молекул и вылететь с поверхности жидкости.
  3. Скорость испарения жидкости зависит от площади её поверхности. Эта причина объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности жидкости, тем большее число молекул одновременно вылетает с неё в воздух.
  4. Испарение жидкости происходит быстрее при ветре. Одновременно с переходом молекул из жидкости в пар происходит и обратный процесс. Беспорядочно двигаясь над поверхностью жидкости, часть молекул, покинувших её, снова в неё возвращается. Поэтому масса жидкости в закрытом сосуде не изменяется, хотя жидкость продолжает испаряться.

Выводы

Мы говорим, что вода испаряется. Но что это значит? Испарение – это процесс, при котором жидкость на воздухе быстро становится газом или паром. Многие жидкости испаряются очень быстро, гораздо быстрее, чем вода. Это относится к алкоголю, бензину, нашатырному спирту. Некоторые жидкости, например ртуть, испаряются очень медленно.

Из-за чего происходит испарение? Чтобы понять это, надо кое-что представлять о природе материи. Насколько мы знаем, каждое вещество состоит из молекул. Две силы оказывают воздействие на эти молекулы. Одна из них – сцепление, которое притягивает их друг к другу. Другая – это тепловое движение отдельных молекул, которое заставляет их разлетаться.

Если сила сцепления выше, вещество остается в твердом состоянии. Если же тепловое движение настолько сильно, что оно превосходит сцепление, то вещество становится или является газом. Если две силы примерло уравновешены, то тогда мы имеем жидкость.

Вода, конечно, является жидкостью. Но на поверхности жидкости есть молекулы, которые движутся настолько быстро, что преодолевают силу сцепления и улетают в пространство. Процесс вылета молекул и называется испарением.

Почему вода испаряется быстрее, когда она находится на солнце или нагревается? Чем выше температура, тем интенсивнее тепловое движение в жидкости. Это значит, что все большее количество молекул набирает достаточную скорость, чтобы улететь. Когда улетают самые быстрые молекулы, скорость оставшихся молекул в среднем замедляется. Почему остающаяся жидкость охлаждается за счет испарения.

Так что, когда вода высыхает, это означает, что она превратилась в газ или пар и стала частью воздуха.



Вверх