Для геометрической прогрессии вычислить b9. Знаменатель геометрической прогрессии: формулы и свойства

Это число называется знаменателем геометрической прогрессии, т. е. каждый член отличается от предыдущего в q раз. (Будем считать, что q ≠ 1, иначе все уж слишком тривиально). Нетрудно видеть, что общая формула n -го члена геометрической прогрессии b n = b 1 q n – 1 ; члены с номерами b n и b m отличаются в q n – m раз.

Уже в Древнем Египте знали не только арифметическую, но и геометрическую прогрессию. Вот, например, задача из папируса Райнда: «У семи лиц по семи кошек; каждая кошка съедает по семи мышей, каждая мышь съедает по семи колосьев, из каждого колоса может вырасти по семь мер ячменя. Как велики числа этого ряда и их сумма?»


Рис. 1. Древнеегипетская задача о геометрической прогресии

Эта задача много раз с разными вариациями повторялась и у других народов в другие времена. Например, в написанной в XIII в. «Книге об абаке» Леонардо Пизанского (Фибоначчи) есть задача, в которой фигурируют 7 старух, направляющихся в Рим (очевидно, паломниц), у каждой из которых 7 мулов, на каждом из которых по 7 мешков, в каждом из которых по 7 хлебов, в каждом из которых по 7 ножей, каждый из которых в 7 ножнах. В задаче спрашивается, сколько всего предметов.

Сумма первых n членов геометрической прогрессии S n = b 1 (q n – 1) / (q – 1) . Эту формулу можно доказать, например, так: S n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 .

Добавим к S n число b 1 q n и получим:

S n + b 1 q n = b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n – 1 + b 1 q n = b 1 + (b 1 + b 1 q + b 1 q 2 + b 1 q 3 + ... + b 1 q n –1) q = b 1 + S n q .

Отсюда S n (q – 1) = b 1 (q n – 1) , и мы получаем необходимую формулу.

Уже на одной из глиняных табличек Древнего Вавилона, относящейся к VI в. до н. э., содержится сумма 1 + 2 + 2 2 + 2 3 + ... + 2 9 = 2 10 – 1. Правда, как и в ряде других случаев мы не знаем, откуда этот факт был известен вавилонянам.

Быстрое возрастание геометрической прогрессии в ряде культур, – в частности, в индийской, – неоднократно используется как наглядный символ необозримости мироздания. В известной легенде о появлении шахмат властелин предоставляет их изобретателю возможность самому выбрать награду, и тот просит такое количество пшеничных зерен, которое получится, если одно положить на первую клетку шахматной доски, два – на вторую, четыре – на третью, восемь – на четвертую и т. д., всякий раз число увеличивается вдвое. Владыка думал, что речь идет, самое большое, о нескольких мешках, но он просчитался. Нетрудно видеть, что за все 64 клетки шахматной доски изобретатель должен был бы получить (2 64 – 1) зерно, что выражается 20-значным числом; даже если засевать всю поверхность Земли, потребовалось бы не менее 8 лет, чтобы собрать необходимое количество зерен. Эту легенду иногда интерпретируют как указание на практически неограниченные возможности, скрытые в шахматной игре.

То, что это число действительно 20-значное, увидеть нетрудно:

2 64 = 2 4 ∙ (2 10) 6 = 16 ∙ 1024 6 ≈ 16 ∙ 1000 6 = 1,6∙10 19 (более точный расчет дает 1,84∙10 19). А вот интересно, сможете ли вы узнать, какой цифрой оканчивается данное число?

Геометрическая прогрессия бывает возрастающей, если знаменатель по модулю больше 1, или убывающей, если он меньше единицы. В последнем случае число q n при достаточно больших n может стать сколь угодно малым. В то время как возрастающая геометрическая прогрессия возрастает неожиданно быстро, убывающая столь же быстро убывает.

Чем больше n , тем слабее число q n отличается от нуля, и тем ближе сумма n членов геометрической прогрессии S n = b 1 (1 – q n ) / (1 – q ) к числу S = b 1 / (1 – q ) . (Так рассуждал, например, Ф. Виет). Число S называется суммой бесконечно убывающей геометрической прогрессии. Тем не менее, долгие века вопрос о том, какой смысл имеет суммирование ВСЕЙ геометрической прогрессии, с ее бесконечным числом членов, не был достаточно ясен математикам.

Убывающую геометрическую прогрессию можно видеть, например, в апориях Зенона «Деление пополам» и «Ахиллес и черепаха». В первом случае наглядно показывается, что вся дорога (предположим, длины 1) является суммой бесконечного числа отрезков 1/2, 1/4, 1/8 и т. д. Так оно, конечно, и есть с точки зрения представлений о конечной сумме бесконечной геометрической прогрессии. И все же – как такое может быть?

Рис. 2. Прогрессия с коэффициентом 1/2

В апории про Ахиллеса ситуация чуть более сложная, т. к. здесь знаменатель прогрессии равен не 1/2, а какому-то другому числу. Пусть, например, Ахиллес бежит со скоростью v , черепаха движется со скоростью u , а первоначальное расстояние между ними равно l . Это расстояние Ахиллес пробежит за время l /v , черепаха за это время сдвинется на расстояние lu /v . Когда Ахиллес пробежит и этот отрезок, дистанция между ним и черепахой станет равной l (u /v ) 2 , и т. д. Получается, что догнать черепаху – значит найти сумму бесконечно убывающей геометрической прогрессии с первым членом l и знаменателем u /v . Эта сумма – отрезок, который в итоге пробежит Ахиллес до места встречи с черепахой – равен l / (1 – u /v ) = lv / (v – u ) . Но, опять-таки, как надо интерпретировать этот результат и почему он вообще имеет какой-то смысл, долгое время было не очень ясно.

Рис. 3. Геометрическая прогрессия с коэффициентом 2/3

Сумму геометрической прогрессии использовал Архимед при определении площади сегмента параболы. Пусть данный сегмент параболы отграничен хордой AB и пусть в точке D параболы касательная параллельна AB . Пусть C – середина AB , E – середина AC , F – середина CB . Проведем прямые, параллельные DC , через точки A , E , F , B ; пусть касательную, проведенную в точке D , эти прямые пересекают в точках K , L , M , N . Проведем также отрезки AD и DB . Пусть прямая EL пересекает прямую AD в точке G , а параболу в точке H ; прямая FM пересекает прямую DB в точке Q , а параболу в точке R . Согласно общей теории конических сечений, DC – диаметр параболы (то есть отрезок, параллельный ее оси); он и касательная в точке D могут служить осями координат x и y , в которых уравнение параболы записывается как y 2 = 2px (x – расстояние от D до какой-либо точки данного диаметра, y – длина параллельного данной касательной отрезка от этой точки диаметра до некоторой точки на самой параболе).

В силу уравнения параболы, DL 2 = 2 ∙ p ∙ LH , DK 2 = 2 ∙ p ∙ KA , а поскольку DK = 2DL , то KA = 4LH . Т. к. KA = 2LG , LH = HG . Площадь сегмента ADB параболы равна площади треугольника ΔADB и площадям сегментов AHD и DRB , вместе взятых. В свою очередь, площадь сегмента AHD аналогичным образом равна площади треугольника AHD и оставшихся сегментов AH и HD , с каждым из которых можно провести ту же операцию – разбить на треугольник (Δ) и два оставшихся сегмента (), и т. д.:

Площадь треугольника ΔAHD равна половине площади треугольника ΔALD (у них общее основание AD , а высоты отличаются в 2 раза), которая, в свою очередь, равна половине площади треугольника ΔAKD , а значит, и половине площади треугольника ΔACD . Таким образом, площадь треугольника ΔAHD равна четверти площади треугольника ΔACD . Аналогично, площадь треугольника ΔDRB равна четверти площади треугольника ΔDFB . Итак, площади треугольников ΔAHD и ΔDRB , вместе взятые, равны четверти площади треугольника ΔADB . Повторение этой операции в применении к сегментам AH , HD , DR и RB выделит и из них треугольники, площадь которых, вместе взятых, будет в 4 раза меньше, чем площадь треугольников ΔAHD и ΔDRB , вместе взятых, а значит, в 16 раз меньше, чем площади треугольника ΔADB . И так далее:

Таким образом, Архимед доказал, что «всякий сегмент, заключенный между прямой и параболой, составляет четыре трети треугольника, имеющего с ним одно и то же основание и равную высоту».

Урок и презентация на тему: "Числовые последовательности. Геометрическая прогрессия"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Степени и корни Функции и графики

Ребята, сегодня мы познакомимся с еще одним видом прогрессии.
Тема сегодняшнего занятия - геометрическая прогрессия.

Геометрическая прогрессия

Определение. Числовая последовательность, в которой каждый член, начиная со второго, равен произведению предыдущего и некоторого фиксированного числа, называется геометрической прогрессией.
Зададим нашу последовательность рекуррентно: $b_{1}=b$, $b_{n}=b_{n-1}*q$,
где b и q – определенные заданные числа. Число q называется знаменателем прогрессии.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице, а $q=2$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми,
а $q=1$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем,
а $q=-1$.

Геометрическая прогрессия обладает свойствами монотонности.
Если $b_{1}>0$, $q>1$,
то последовательность возрастающая.
Если $b_{1}>0$, $0 Последовательность принято обозначать в виде: $b_{1}, b_{2}, b_{3}, ..., b_{n}, ...$.

Также как и в арифметической прогрессии, если в геометрической прогрессии количество элементов конечно, то прогрессия называется конечной геометрической прогрессией .

$b_{1}, b_{2}, b_{3}, ..., b_{n-2}, b_{n-1}, b_{n}$.
Отметим, если последовательность является геометрической прогрессией, то и последовательность квадратов членов, также является геометрической прогрессией. У второй последовательность первый член равен $b_{1}^2$, а знаменатель равен $q^2$.

Формула n-ого члена геометрической прогрессии

Геометрическую прогрессию можно задавать и в аналитической форме. Давайте посмотрим, как это сделать:
$b_{1}=b_{1}$.
$b_{2}=b_{1}*q$.
$b_{3}=b_{2}*q=b_{1}*q*q=b_{1}*q^2$.
$b_{4}=b_{3}*q=b_{1}*q^3$.
$b_{5}=b_{4}*q=b_{1}*q^4$.
Мы легко замечаем закономерность: $b_{n}=b_{1}*q^{n-1}$.
Наша формула называется "формулой n-ого члена геометрической прогрессии".

Вернемся к нашим примерам.

Пример. 1,2,4,8,16… Геометрическая прогрессия, у которой первый член равен единице,
а $q=2$.
$b_{n}=1*2^{n}=2^{n-1}$.

Пример. 16,8,4,2,1,1/2… Геометрическая прогрессия, у которой первый член равен шестнадцати, а $q=\frac{1}{2}$.
$b_{n}=16*(\frac{1}{2})^{n-1}$.

Пример. 8,8,8,8… Геометрическая прогрессия, у которой первый член равен восьми, а $q=1$.
$b_{n}=8*1^{n-1}=8$.

Пример. 3,-3,3,-3,3… Геометрическая прогрессия, у которой первый член равен трем, а $q=-1$.
$b_{n}=3*(-1)^{n-1}$.

Пример. Дана геометрическая прогрессия $b_{1}, b_{2}, …, b_{n}, … $.
а) Известно,что $b_{1}=6, q=3$. Найти $b_{5}$.
б) Известно,что $b_{1}=6, q=2, b_{n}=768$. Найти n.
в) Известно,что $q=-2, b_{6}=96$. Найти $b_{1}$.
г) Известно,что $b_{1}=-2, b_{12}=4096$. Найти q.

Решение.
а) $b_{5}=b_{1}*q^4=6*3^4=486$.
б) $b_n=b_1*q^{n-1}=6*2^{n-1}=768$.
$2^{n-1}=\frac{768}{6}=128$,так как $2^7=128 => n-1=7; n=8$.
в) $b_{6}=b_{1}*q^5=b_{1}*(-2)^5=-32*b_{1}=96 => b_{1}=-3$.
г) $b_{12}=b_{1}*q^{11}=-2*q^{11}=4096 => q^{11}=-2048 => q=-2$.

Пример. Разность между седьмым и пятым членами геометрической прогрессии равны 192, сумма пятого и шестого члена прогрессии равна 192. Найти десятый член этой прогрессии.

Решение.
Нам известно, что: $b_{7}-b_{5}=192$ и $b_{5}+b_{6}=192$.
Мы так же знаем: $b_{5}=b_{1}*q^4$; $b_{6}=b_{1}*q^5$; $b_{7}=b_{1}*q^6$.
Тогда:
$b_{1}*q^6-b_{1}*q^4=192$.
$b_{1}*q^4+b_{1}*q^5=192$.
Получили систему уравнений:
$\begin{cases}b_{1}*q^4(q^2-1)=192\\b_{1}*q^4(1+q)=192\end{cases}$.
Приравняв, наши уравнения получим:
$b_{1}*q^4(q^2-1)=b_{1}*q^4(1+q)$.
$q^2-1=q+1$.
$q^2-q-2=0$.
Получили два решения q: $q_{1}=2, q_{2}=-1$.
Последовательно подставим во второе уравнение:
$b_{1}*2^4*3=192 => b_{1}=4$.
$b_{1}*(-1)^4*0=192 =>$ нет решений.
Получили что: $b_{1}=4, q=2$.
Найдем десятый член: $b_{10}=b_{1}*q^9=4*2^9=2048$.

Сумма конечной геометрической прогрессии

Пусть у нас есть конечная геометрическая прогрессия. Давайте, также как и для арифметической прогрессии, посчитаем сумму ее членов.

Пусть дана конечная геометрическая прогрессия: $b_{1},b_{2},…,b_{n-1},b_{n}$.
Введем обозначение суммы ее членов: $S_{n}=b_{1}+b_{2}+⋯+b_{n-1}+b_{n}$.
В случае, когда $q=1$. Все члены геометрической прогрессии равны первому члену, тогда очевидно, что $S_{n}=n*b_{1}$.
Рассмотрим теперь случай $q≠1$.
Умножим указанную выше сумму на q.
$S_{n}*q=(b_{1}+b_{2}+⋯+b_{n-1}+b_{n})*q=b_{1}*q+b_{2}*q+⋯+b_{n-1}*q+b_{n}*q=b_{2}+b_{3}+⋯+b_{n}+b_{n}*q$.
Заметим:
$S_{n}=b_{1}+(b_{2}+⋯+b_{n-1}+b_{n})$.
$S_{n}*q=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q$.

$S_{n}*q-S_{n}=(b_{2}+⋯+b_{n-1}+b_{n})+b_{n}*q-b_{1}-(b_{2}+⋯+b_{n-1}+b_{n})=b_{n}*q-b_{1}$.

$S_{n}(q-1)=b_{n}*q-b_{1}$.

$S_{n}=\frac{b_{n}*q-b_{1}}{q-1}=\frac{b_{1}*q^{n-1}*q-b_{1}}{q-1}=\frac{b_{1}(q^{n}-1)}{q-1}$.

$S_{n}=\frac{b_{1}(q^{n}-1)}{q-1}$.

Мы получили формулу суммы конечной геометрической прогрессии.


Пример.
Найти сумму первых семи членов геометрической прогрессии, у которой первый член равен 4, а знаменатель 3.

Решение.
$S_{7}=\frac{4*(3^{7}-1)}{3-1}=2*(3^{7}-1)=4372$.

Пример.
Найти пятый член геометрической прогрессии, о которой известно: $b_{1}=-3$; $b_{n}=-3072$; $S_{n}=-4095$.

Решение.
$b_{n}=(-3)*q^{n-1}=-3072$.
$q^{n-1}=1024$.
$q^{n}=1024q$.

$S_{n}=\frac{-3*(q^{n}-1)}{q-1}=-4095$.
$-4095(q-1)=-3*(q^{n}-1)$.
$-4095(q-1)=-3*(1024q-1)$.
$1365q-1365=1024q-1$.
$341q=1364$.
$q=4$.
$b_5=b_1*q^4=-3*4^4=-3*256=-768$.

Характеристическое свойство геометрической прогрессии

Ребята, дана геометрическая прогрессия. Давайте рассмотрим три последовательных её члена: $b_{n-1},b_{n},b_{n+1}$.
Мы знаем что:
$\frac{b_{n}}{q}=b_{n-1}$.
$b_{n}*q=b_{n+1}$.
Тогда:
$\frac{b_{n}}{q}*b_{n}*q=b_{n}^{2}=b_{n-1}*b_{n+1}$.
$b_{n}^{2}=b_{n-1}*b_{n+1}$.
Если прогрессия конечная, то это равенство выполняется для всех членов, кроме первого и последнего.
Если заранее неизвестно, какой вид у последовательности, но известно что: $b_{n}^{2}=b_{n-1}*b_{n+1}$.
Тогда можно смело говорить, что это геометрическая прогрессия.

Числовая последовательность является геометрической прогрессией, только когда квадрат каждого её члена равен произведению двух соседних с ним членов прогрессии. Не забываем, что для конечной прогрессии это условие не выполняется для первого и последнего члена.


Давайте посмотрим вот на это тождество: $\sqrt{b_{n}^{2}}=\sqrt{b_{n-1}*b_{n+1}}$.
$|b_{n}|=\sqrt{b_{n-1}*b_{n+1}}$.
$\sqrt{a*b}$ называется средним геометрическим чисел a и b.

Модуль любого члена геометрической прогрессии равен среднему геометрическому двух соседних с ним членов.


Пример.
Найти такие х, что бы $х+2; 2x+2; 3x+3$ являлись тремя последовательными членами геометрической прогрессии.

Решение.
Воспользуемся характеристическим свойством:
$(2x+2)^2=(x+2)(3x+3)$.
$4x^2+8x+4=3x^2+3x+6x+6$.
$x^2-x-2=0$.
$x_{1}=2$ и $x_{2}=-1$.
Подставим последовательно в исходные выражение, наши решения:
При $x=2$, получили последовательность: 4;6;9 – геометрическая прогрессия, у которой $q=1,5$.
При $х=-1$, получили последовательность: 1;0;0.
Ответ: $х=2.$

Задачи для самостоятельного решения

1. Найдите восьмой первый член геометрической прогрессии 16;-8;4;-2… .
2. Найдите десятый член геометрической прогрессии 11,22,44… .
3. Известно, что $b_{1}=5, q=3$. Найти $b_{7}$.
4. Известно, что $b_{1}=8, q=-2, b_{n}=512$. Найти n.
5. Найдите сумму первых 11 членов геометрической прогрессии 3;12;48… .
6. Найти такие х, что $3х+4; 2x+4; x+5$ являются тремя последовательными членами геометрической прогрессии.

Математика – это то, посредством чего люди управляют природой и собой.

Советский математик, академик А.Н. Колмогоров

Геометрическая прогрессия.

Наряду с задачами на арифметические прогрессии также распространенными на вступительных испытаниях по математике являются задачи, связанные с понятием геометрической прогрессии. Для успешного решения таких задач необходимо знать свойства геометрической прогрессии и иметь хорошие навыки их использования.

Настоящая статья посвящена изложению основных свойств геометрической прогрессии. Здесь также приводятся примеры решения типовых задач , позаимствованных из заданий вступительных испытаний по математике.

Предварительно отметим основные свойства геометрической прогрессии и напомним наиболее важные формулы и утверждения , связанные с этим понятием.

Определение. Числовая последовательность называется геометрической прогрессией, если каждое ее число, начиная со второго, равно предыдущему, умноженному на одно и то же число . Число называется знаменателем геометрической прогрессии.

Для геометрической прогрессии справедливы формулы

, (1)

где . Формула (1) называется формулой общего члена геометрической прогрессии, а формула (2) представляет собой основное свойство геометрической прогрессии: каждый член прогрессии совпадает со средним геометрическим своих соседних членов и .

Отметим , что именно из-за этого свойства рассматриваемая прогрессия называется «геометрической».

Приведенные выше формулы (1) и (2) обобщаются следующим образом:

, (3)

Для вычисления суммы первых членов геометрической прогрессии применяется формула

Если обозначить , то

где . Так как , то формула (6) является обобщением формулы (5).

В том случае , когда и , геометрическая прогрессия является бесконечно убывающей. Для вычисления суммы всех членов бесконечно убывающей геометрической прогрессии используется формула

. (7)

Например , с помощью формулы (7) можно показать , что

где . Данные равенства получены из формулы (7) при условии, что , (первое равенство) и , (второе равенство).

Теорема. Если , то

Доказательство. Если , то ,

Теорема доказана.

Перейдем к рассмотрению примеров решения задач на тему «Геометрическая прогрессия».

Пример 1. Дано: , и . Найти .

Решение. Если применить формулу (5), то

Ответ: .

Пример 2. Пусть и . Найти .

Решение. Так как и , то воспользуемся формулами (5), (6) и получим систему уравнений

Если второе уравнение системы (9) разделить на первое , то или . Отсюда следует и . Рассмотрим два случая.

1. Если , то из первого уравнения системы (9) имеем .

2. Если , то .

Пример 3. Пусть , и . Найти .

Решение. Из формулы (2) следует, что или . Так как , то или .

По условию . Однако , поэтому . Поскольку и , то здесь имеем систему уравнений

Если второе уравнение системы разделить на первое, то или .

Так как , то уравнение имеет единственный подходящий корень . В таком случае из первого уравнения системы вытекает .

Принимая во внимание формулу (7), получаем.

Ответ: .

Пример 4. Дано: и . Найти .

Решение. Так как , то .

Поскольку , то или

Согласно формуле (2) имеем . В этой связи из равенства (10) получаем или .

Однако по условию , поэтому .

Пример 5. Известно, что . Найти .

Решение. Согласно теореме имеем два равенства

Так как , то или . Поскольку , то .

Ответ: .

Пример 6. Дано: и . Найти .

Решение. Принимая во внимание формулу (5), получаем

Так как , то . Поскольку , и , то .

Пример 7. Пусть и . Найти .

Решение. Согласно формуле (1) можно записать

Следовательно, имеем или . Известно, что и , поэтому и .

Ответ: .

Пример 8. Найти знаменатель бесконечной убывающей геометрической прогрессии , если

и .

Решение. Из формулы (7) следует и . Отсюда и из условия задачи получаем систему уравнений

Если первое уравнение системы возвести в квадрат , а затем полученное уравнение разделить на второе уравнение , то получим

Или .

Ответ: .

Пример 9. Найти все значения , при которых последовательность , , является геометрической прогрессией.

Решение. Пусть , и . Согласно формуле (2), которая задает основное свойство геометрической прогрессии, можно записать или .

Отсюда получаем квадратное уравнение , корнями которого являются и .

Выполним проверку: если , то , и ; если , то , и .

В первом случае имеем и , а во втором – и .

Ответ: , .

Пример 10. Решить уравнение

, (11)

где и .

Решение. Левая часть уравнения (11) представляет собой сумму бесконечной убывающей геометрической прогрессии, в которой и , при условии: и .

Из формулы (7) следует , что . В этой связи уравнение (11) принимает вид или . Подходящим корнем квадратного уравнения является

Ответ: .

Пример 11. П оследовательность положительных чисел образует арифметическую прогрессию , а – геометрическую прогрессию , причем здесь . Найти .

Решение. Так как арифметическая последовательность , то (основное свойство арифметической прогрессии). Поскольку , то или . Отсюда следует , что геометрическая прогрессия имеет вид . Согласно формуле (2) , далее запишем , что .

Так как и , то . В таком случае выражение принимает вид или . По условию , поэтому из уравнения получаем единственное решение рассматриваемой задачи , т.е. .

Ответ: .

Пример 12. Вычислить сумму

. (12)

Решение. Умножим на 5 обе части равенства (12) и получим

Если из полученного выражения вычесть (12) , то

или .

Для вычисления подставим в формулу (7) значения , и получим . Так как , то .

Ответ: .

Приведенные здесь примеры решения задач будут полезны абитуриентам при подготовке к вступительным испытаниям. Для более глубокого изучения методов решения задач , связанных с геометрической прогрессией , можно использовать учебные пособия из списка рекомендуемой литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование, 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

3. Медынский М.М. Полный курс элементарной математики в задачах и упражнениях. Книга 2: Числовые последовательности и прогрессии. – М.: Эдитус , 2015. – 208 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

>>Математика: Геометрическая прогрессия

Для удобства читателя этот параграф строится точно по тому же плану, которого мы придерживались в предыдущем параграфе.

1. Основные понятия.

Определение. Числовую последовательность, все члены которой отличны от 0 и каждый член которой, начиная со второго, получается из предыдущего члена умножением его на одно и то же число называют геометрической прогрессией . При этом число 5 называют знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия - это числовая последовательность (b n), заданная рекуррентно соотношениями

Можно ли, глядя на числовую последовательность, определить, является ли она геометрической прогрессией? Можно. Если вы убедились в том, что отношение любого члена последовательности к предыдущему члену постоянно то перед вами- геометрическая прогрессия.
Пример 1.

1, 3, 9, 27, 81,... .
Ь 1 = 1, q = 3.

Пример 2.

Это геометрическая прогрессия, у которой
Пример 3.


Это геометрическая прогрессия, у которой
Пример 4.

8, 8, 8, 8, 8, 8,....

Это геометрическая прогрессия, у которой b 1 - 8, q = 1.

Заметим, что эта последовательность является и арифметической прогрессией (см. пример 3 из § 15).

Пример 5.

2,-2,2,-2,2,-2.....

Это геометрическая прогрессия, у которой b 1 = 2, q = -1.

Очевидно, что геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1 (см. пример 1), и убывающей, если b 1 > 0, 0 < q < 1 (см. пример 2).

Для обозначения того, что последовательность (b n) является геометрической прогрессией, иногда бывает удобна следующая запись:


Значок заменяет словосочетание «геометрическая прогрессия».
Отметим одно любопытное и в то же время достаточно очевидное свойство геометрической прогрессии:
Если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е. является геометрической прогрессией.
У второй геометрической прогрессии первый член равен а равен q 2 .
Если в геометрической прогрессии отбросить все члены, следующие за b n , то получится конечная геометрическая прогрессия
В дальнейших пунктах этого параграфа мы рассмотрим наиболее важные свойства геометрической прогрессии.

2. Формула п-го члена геометрической прогрессии.

Рассмотрим геометрическую прогрессию знаменателем q. Имеем:


Нетрудно догадаться, что для любого номера n справедливо равенство


Это - формула n-го члена геометрической прогрессии.

Замечание.

Если вы прочли важное замечание из предыдущего параграфа и поняли его, то попробуйте доказать формулу (1) методом математической индукции подобно тому, как зто было сделано для формулы n-го члена арифметической прогрессии.

Перепишем формулу n-го члена геометрической прогрессии


и введем обозначения: Получим у = mq 2 , или, подробнее,
Аргумент х содержится в показателе степени, поэтому такую функцию называют показательной функцией. Значит, геометрическую прогрессию можно рассматривать как показательную функцию, заданную на множестве N натуральных чисел . На рис. 96а изображен график функции рис. 966 - график функции В обоих случаях имеем изолированные точки (с абсциссами х= 1, х = 2, х = 3 и т.д.), лежащие на некоторой кривой (на обоих рисунках представлена одна и та же кривая, только по-разному расположенная и изображенная в разных масштабах). Эту кривую называют экспонентой. Подробнее о показательной функции и ее графике речь пойдет в курсе алгебры 11-го класса.


Вернемся к примерам 1-5 из предыдущего пункта.

1) 1, 3, 9, 27, 81,... . Это геометрическая прогрессия, у которой Ь 1 = 1, q = 3. Составим формулу n-го члена
2) Это геометрическая прогрессия, у которой Составим формулу n-го члена

Это геометрическая прогрессия, у которой Составим формулу n-го члена
4) 8, 8, 8, ..., 8, ... . Это геометрическая прогрессия, у которой b 1 = 8, q = 1. Составим формулу n-го члена
5) 2, -2, 2, -2, 2, -2,.... Это геометрическая прогрессия, у которой b 1 = 2, q = -1. Составим формулу n-го члена

Пример 6.

Дана геометрическая прогрессия

Во всех случаях в основе решения лежит формула n-го члена геометрической прогрессии

а) Положив в формуле n-го члена геометрической прогрессии n = 6, получим


б) Имеем


Так как 512 = 2 9 , то получаем п - 1 = 9, п = 10.


г) Имеем

Пример 7.

Разность между седьмым и пятым членами геометрической прогрессии равна 48, сумма пятого и шестого членов прогрессии также равна 48. Найти двенадцатый член этой прогрессии.

Первый этап. Составление математической модели .

Условия задачи можно кратко записать так:


Воспользовавшись формулой n-го члена геометрической прогрессии, получим:
Тогда второе условие задачи (b 7 - b 5 = 48) можно записать в виде


Третье условие задачи (b 5 +b 6 = 48) можно записать в виде


В итоге получаем систему двух уравнений с двумя переменными b 1 и q:


которая в сочетании с записанным выше условием 1) и представляет собой математическую модель задачи.

Второй этап.

Работа с составленной моделью. Приравняв левые части обоих уравнений системы, получим:


(мы разделили обе части уравнения на выражение b 1 q 4 , отличное от нуля).

Из уравнения q 2 - q - 2 = 0 находим q 1 = 2, q 2 = -1. Подставив значение q = 2 во второе уравнение системы, получим
Подставив значение q = -1 во второе уравнение системы, получим b 1 1 0 = 48; это уравнение не имеет решений.

Итак, b 1 =1, q = 2 - эта пара является решением составленной системы уравнений.

Теперь мы можем записать геометрическую прогрессию, о которой идет речь в задаче: 1, 2, 4, 8, 16, 32, ... .

Третий этап.

Ответ на вопрос задачи. Требуется вычислить b 12 . Имеем

О т в е т: b 12 = 2048.

3. Формула суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия


Обозначим через S n сумму ее членов, т.е.

Выведем формулу для отыскания этой суммы .

Начнем с самого простого случая, когда q = 1. Тогда геометрическая прогрессия b 1 ,b 2 , b 3 ,..., bn состоит из n чисел, равных b 1 , т.е. прогрессия имеет вид b 1 , b 2 , b 3 , ..., b 4 . Сумма этих чисел равна nb 1 .

Пусть теперь q = 1 Для отыскания S n применим искусственный прием: выполним некоторые преобразования выражения S n q. Имеем:

Выполняя преобразования, мы, во-первых, пользовались определением геометрической прогрессии, согласно которому (см. третью строчку рассуждений); во-вторых, прибавили и вычли отчего значение выражения, разумеется, не изменилось (см. четвертую строчку рассуждений); в-третьих, воспользовались формулой n-го члена геометрической прогрессии:


Из формулы (1) находим:

Это - формула суммы n членов геометрической прогрессии (для случая, когда q = 1).

Пример 8.

Дана конечная геометрическая прогрессия

а) сумму членов прогрессии; б) сумму квадратов ее членов.

б) Выше (см. с. 132) мы уже отмечали, что если все члены геометрической прогрессии возвести в квадрат , то получится геометрическая прогрессия с первым членом Ь 2 и знаменателем q 2 . Тогда сумма шести членов новой прогрессии будет вычисляться по

Пример 9.

Найти 8-й член геометрической прогрессии, у которой


Фактически мы доказали следующую теорему.

Числовая, последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого Теорема (и последнего, в случае конечной последовательности),равен произведению предшествующего и последующего членов (характеристическое свойство геометрической прогрессии).

Геометрическая прогрессия не менее важная в математике по сравнению с арифметической. Геометрической прогрессией называют такую последовательность чисел b1, b2,..., b[n] каждый следующий член которой, получается умножением предыдущего на постоянное число. Это число, которое также характеризует скорость роста или убывания прогрессии называют знаменателем геометрической прогрессии и обозначают

Для полного задания геометрической прогрессии кроме знаменателя необходимо знать или определить первый ее член. Для положительного значения знаменателя прогрессия является монотонной последовательностью, причем если это последовательность чисел является монотонно убывающей и при монотонно возрастающей. Случай, когда знаменатель равен единице на практике не рассматривается, поскольку имеем последовательность одинаковых чисел, а их суммирование не вызывает практического интереса

Общий член геометрической прогрессии вычисляют по формуле

Сумма n первых членов геометрической прогрессии определяют по формуле

Рассмотрим решения классических задач на геометрическую прогрессию. Начнем для понимания с простейших.

Пример 1. Первый член геометрической прогрессии равен 27, а ее знаменатель равен 1/3. Найти шесть первых членов геометрической прогрессии.

Решение: Запишем условие задачи в виде

Для вычислений используем формулу n-го члена геометрической прогрессии

На ее основе находим неизвестные члены прогрессии

Как можно убедиться, вычисления членов геометрической прогрессии несложные. Сама прогрессия будет выглядеть следующим образом

Пример 2. Даны три первых члена геометрической прогрессии : 6; -12; 24. Найти знаменатель и седьмой ее член.

Решение: Вычисляем знаменатель геомитрической прогрессии исходя из его определения

Получили знакопеременную геометрическую прогрессию знаменатель которой равен -2. Седьмой член вычисляем по формуле

На этом задача решена.

Пример 3. Геометрическая прогрессия задана двумя ее членами . Найти десятый член прогрессии.

Решение:

Запишем заданные значения через формулы

По правилам нужно было бы найти знаменатель, а затем искать нужное значение, но для десятого члена имеем

Такую же формулу можно получить на основе нехитрых манипуляций с входными данными. Разделим шестой член ряда на другой, в результате получим

Если полученное значение умножить на шестой член, получим десятый

Таким образом, для подобных задач с помощью несложных преобразований в быстрый способ можно отыскать правильное решение.

Пример 4. Геометрическая прогрессия задано рекуррентными формулами

Найти знаменатель геометрической прогрессии и сумму первых шести членов.

Решение:

Запишем заданные данные в виде системы уравнений

Выразим знаменатель разделив второе уравнение на первое

Найдем первый член прогрессии из первого уравнения

Вычислим следующие пять членов для нахождения суммы геометрической прогрессии



Вверх