В процессе эвтрофикации водоеме может произойти. Причины и механизмы эвтрофикации водоемов. Виды химических загрязнений


Под загрязнением водоемов понимается ухудшение их экономического значения и биосферных функций в результате антропогенного поступления в них вредных веществ. Экологическое действие загрязняющих веществ проявляется на организменном, популяционном, биоценотнческом и экоснстемном уровнях.

На организменном уровне наблюдаются нарушение отдельных физиологических функций, изменение поведения, снижение темпа роста, увеличение смертности вследствие прямого отравления или уменьшения устойчивости к стрессовым состояниям внешней среды. Большое значение имеет изменение наследственности особей - повреждение их генетического аппарата и трансформации исходного генофонда.

На уровне популяций загрязнение может вызывать изменение их численности и биомассы, рождаемости и смертности, половой и размерной структуры, типа динамики и ряда функциональных свойств. К этому следует добавить хаотизацию внутрипопуляционных отношений, вызываемую изменением поведения особей и искажением языка химических сигналов, играющих огромную роль в коммуникации особей.

На биоценотическом уровне загрязнение сказывается на структуре и функциях сообщества, поскольку одни и те же загрязняющие вещества неодинаково влияют на разные компоненты биоценоза. Например, жгутиковые водоросли устойчивее диатомовых к нефтяному загрязнению, и оно существенно изменяет видовую структуру микропланктона. Под влиянием токсических веществ изменяется хорологическая структура сообществ, цепи разложения начинают преобладать над пастбищными, анаэробные процессы над аэробными, деструкция над продукцией. В конечном счете происходит деградация экосистем - ухудшение их как элементов среды человека и снижение положительной роли в формировании биосферы, обесценение в хозяйственном отношении (замена ценных видов бесполезными, появление вредных видов и др.).

Для многих гидробионтов характерен кумулятивный эффект - накопление в организме токсиканта, когда скорость его поступления в тело выше, чем скорость выведения из него. Накапливая ядовитое вещество, организмы начинают страдать от него даже тогда, когда концентрация токсиканта в воде сравнительно невелика (ниже пороговой). Помимо этого, концентрируя в себе ядовитые вещества, гидробионты сами становятся токсически опасными. Обнаружено, что многие моллюски энергично накапливают цинк и медь, медузы - цинк, радиолярии - стронций, асцидии - ванадий, морские водоросли - йод, бром и алюминий. В ряде случаев наблюдается нарастание концентрации токсикантов в организмах последующих трофических уравнений - так называемый эффект пищевой цепи. Например, с липофильными свойствами метилированной ртути и ее способностью образовывать прочные комплексы с белками связано «ртутное загрязнение» тунцов - одного из верхних звеньев трофической цепи в океане. Эффект пищевой цепи характерен также для хлорорганических соединений (ДДТ и др.) и некоторых других токсикантов. Прослеживается обратная корреляция между размерами организмов и коэффициентами накопления ими токсикантов. В значительной мере это связано с увеличением относительной поверхности при уменьшении организмов (больше адсорбирующая площадь).

Из загрязняющих веществ наибольшее значение для водных экосистем имеют нефть и продукты ее переработки, пестициды, соединения тяжелых металлов, детергенты, антисептики. Чрезвычайно опасным стало загрязнение водоемов различными продуктами радиоактивного распада - радионуклидами, или радиоизотопами. Все большую озабоченность вызывает ацидификация пресных водоемов в результате выпадения «кислых дождей», когда в атмосферной влаге растворяются сернистый газ и некоторые другие вещества, выбрасываемые в воздух различными промышленными предприятиями. Значительную роль в загрязнении водоемов играют бытовые стоки, лесосплав, отходы деревообрабатывающей промышленности, пластики и многие другие загрязнения, не относящиеся к токсическим, но ухудшающие среду гидробионтов (снижение концентрации кислорода, уменьшение прозрачности воды, выпадение взвеси на дно и др.).

Антропогенная эвтрофикация

Важное последствие бытового загрязнения вытекает из того, что коммунальные сточные воды, кроме большого количества органических веществ, несут и много биогенных элементов. Результатом этого становится антропогенная эвтрофикация водоемов и водотоков, под которой подразумевают связанное с деятельностью человека повышение уровня трофии водоемов, возникающее в результате избыточного поступления в них биогенов (азота, фосфора) и сопровождающееся характерным комплексом изменения экосистем.

Для оценки степени эвтрофикации водоемов используют биологические, химические и физические показатели, различные для поверхностных и глубинных вод. Например, для эпилимниона это в первую очередь видовой состав, численность, биомасса и продукция водорослей, численность бактерий, в частности сапрофитных, видовой состав и степень развития макрофитов, содержание Р-Р0 4 или сумма фосфорсодержащих компонентов в начале весенней циркуляции, активность фосфатазы и нитрогеназы. Для гиполимниона это прежде всего содержание кислорода в воде к концу летней стагнации, ВПК, выделение СО2, накопление Р-РО4 и растворенных соединений азота, образование метана и сероводорода в донных отложениях.

Главными агентами эвтрофирования могут выступать соединения азота и фосфора, главным образом в виде нитратов и фосфатов.

Источники поступления агентов эвтрофирования:

¾ естественное вымывание питательных веществ из почвы и выветривание пород;

¾ сбросы частично очищенных или неочищенных бытовых сточных вод; содержащих органические соединения азота и фосфора, нитраты и фосфаты;

¾ смыв неорганических удобрений, содержащих нитраты и фосфат;

¾ смыв с ферм навоза, содержащего органические соединения азота и фосфора, нитраты, фосфаты и аммиак;

¾ смывы с нарушенных территорий (шахты, отвалы, стройки, неправильное использование земель);

¾ сбросы детергентов, содержащих фосфаты;

¾ поступление нитратов из атмосферы.

Вещества, способствующие эвтрофикации водоемов, разнообразны по своему происхождению, составу, физиологическому и экологическому значению. Из них основные - фосфор и азот, значительно реже углерод, кремний и некоторые другие. Из двух первых биогенов большее значение имеет фосфор; реже лимитирует развитие автотрофов азот, что в значительной мере связано со способностью многих бактерий и цианобактерий к его фиксации.

По мере роста населения и развития централизованной канализации непрерывно увеличивается поступление биогенов с коммунальными стоками. Этому способствует, в частности, употребление во все больших количествах моющих средств, содержащих фосфор.

Стадии эвтрофирования. При эвтрофировании водная экосистема последовательно проходит несколько стадий. Сначала происходит накопление минеральных солей азота и/или фосфора в воде. Эта стадия, как правило, непродолжительна, так как поступающий лимитирующий элемент немедленно вовлекается в кругооборот и наступает стадия интенсивного развития водорослей в эпилимнионе. Нарастает биомасса фитопланктона, увеличивается мутность воды, повышается концентрация кислорода в верхних слоях воды.

Затем наступает стадия отмирания водорослей, происходят аэробная деградация детрита, образование хемоклина. Интенсивно отлагаются донные илы с повышенным содержанием органики. Отмечаются изменения зооценоза (замещение лососевых рыб карповыми).

Наконец, наступает полное исчезновение кислорода в глубинных слоях и начинается анаэробное брожение. Характерно образование сероводорода, сероорганических соединений и аммиака.

Хозяйственные последствия эвтрофирования. Обильная растительность может препятствовать движению воды и водного транспорта, вода может стать непригодной для питья даже после обработки, рекреационная ценность водоема может снизиться, могут исчезнуть коммерчески важные виды рыб (такие как форель). Наконец, эвтрофирование приводит к вспышкам «цветения» (массового развития) водорослей.

Цветение водорослей наносит двоякий ущерб водной системе. Во-первых, оно снижает освещенность, вызывая гибель водных растений. Тем самым нарушаются естественные местообитания многих гидробионтов. Во-вторых, при отмирании водорослей потребляется много кислорода, что может привести к тем же последствиям, что и прямое внесение органики в воду.

Поступающие в водотоки и водоемы с бытовыми стоками легкоокисляемые органические вещества подвергаются там химическому и микробиологическому окислению. Для измерения содержания органических веществ в воде принято пользоваться величиной биохимического потребления кислорода за 5 сут. (БПК 5 ). Ее определяют по разнице содержания в воде кислорода при отборе пробы и после пяти суток инкубации без доступа кислорода. БПК 5 , отражая содержание легкоокисляемой органики в воде, является универсальным показателем, используя который можно сопоставить степень загрязнения от разных источников. Легкоокисляемое органическое вещество, в избытке содержащееся в коммунально-бытовых стоках, становится питательной средой для развития множества микроорганизмов, в том числе и патогенных. Кроме непосредственной опасности развития патогенных организмов в воде, загрязненной бытовыми стоками, существует другое непрямое неприятное для человека последствие этого вида загрязнений. При разложении органического вещества (и химическом, и микробиологическом) потребляется кислород. В случае тяжелого загрязнения содержание растворенного в воде кислорода падает настолько, что это сопровождается не только заморами рыбы, но и невозможностью нормального функционирования микробиологических сообществ. Происходит деградация водной экосистемы.

В проточных водах и в водоемах замедленного водообмена картина последствий загрязнения бытовыми стоками выглядят по-разному.

В проточных водах образуются четыре, следующие друг за другом по течению, зоны. В них совершенно четко выражены градиенты содержания кислорода (увеличение от места сброса вниз по течению), биогенных веществ и БПК 5 (соответствующее снижение), видового состава биологических сообществ.

Первая зона – зона полной деградации, где происходит смешивание сточных и речных вод. Далее располагается зона активного разложения, в которой микроорганизмы разрушают большую часть попавших органических веществ. Затем следуют зоны восстановления качества воды и, наконец, чистой воды.

Еще в начале ХХ в. Р. Кольквитц и М. Марссон привели списки индикаторных организмов для каждой из этих зон, создав так называемую шкалу сапробности (от греч. сапрос – гнилой).

В первой зоне, полисапробной , содержится значительное количество нестойких органических веществ и продуктов их анаэробного распада, много белковых веществ. Фотосинтез отсутствует, и кислород поступает в воду только из атмосферы, полностью расходуясь на окисление. Анаэробные бактерии вырабатывают метан, Desulfovibrio desulphuricans восстанавливает сульфаты до сероводорода, что способствует образованию черного сернистого железа. Благодаря этому ил черный, с запахом сероводорода. Очень много сапрофитной микрофлоры, нитчатых бактерий, серных бактерий, простейших – инфузорий, бесцветных жгутиковых, олигохет-тубифицид.

В следующей за ней α-мезосапробной зоне идет аэробный распад органических веществ. Аммонийные бактерии метаболизируют азотные соединения с образованием аммиака. Высокое содержание углекислоты, кислорода все еще мало, но сероводорода и метана уже нет, БПК 5 составляет десятки миллиграммов в литре. Сапрофитные бактерии исчисляются десятками и сотнями тысяч в 1 мл. Железо присутствует в окисной и закисной формах. Протекают окислительно-восстановительные процессы. Ил серого цвета. Преобладают организмы, приспособившиеся к недостатку кислорода и высокому содержанию углекислоты. Много растительных организмов с миксотрофным питанием. В массе развиваются нитчатые бактерии, грибы, хламидомонады, эвглены. Встречаются сидячие инфузории, коловратки, много жгутиковых. Много тубифицид и личинок хирономид.

В β-мезосапробной зоне практически нет нестойких органических веществ, они почти полностью минерализовались. Сапрофитов – тысячи клеток в 1 мл. Содержание кислорода и углекислоты колеблется в зависимости от времени суток. Ил желтый, идут окислительные процессы, много детрита. Много организмов с автотрофным питанием, наблюдается цветение воды. Встречаются диатомеи, зеленые, много протококковых водорослей. Появляется роголистник. Много корненожек, солнечников, инфузорий, червей, моллюсков, личинок хирономид. Встречаются ракообразные и рыбы.

Олигосапробная зона соответствует зоне чистой воды. Цветения не бывает, содержание кислорода и углекислоты постоянно. На дне мало детрита, автотрофных организмов и червей, моллюсков, хирономид. Много личинок поденок, веснянок, можно встретить стерлядь, гольяна, форель.

В водоемах замедленного водообмена картина зависит от размеров водоема и режима сброса сточных вод. В больших водоемах (морях, крупных озерах) вокруг постоянно действующего источника образуются, концентрически расположенные, поли-, мезо и олигосапробная зоны. Такая картина может сохраняться неопределенно долгое время, если самоочистительный потенциал водоема позволяет ему справляться с поступающей нагрузкой. Если водоем небольшой, то он трансформируется, по мере поступления загрязнений из олигосапробного в полисапробное состояние, а со снятием нагрузки может вернуться в олигосапробное состояние.

Основная мера предупреждения эвтрофикации водоемов сводится к их охране от избыточного поступления биогенов, в частности фосфора и азота. Эта мера осуществляется многими путями. В первую очередь к ним относится повышение культуры земледелия, сопровождающееся уменьшением стока биогенов с сельскохозяйственных угодий. Очень важно не применять повышенные дозы удобрений, не дающие заметного экономического эффекта. Другой путь - перехват биогенов, выносимых с сельскохозяйственных угодий. Для малых водоемов можно сооружать кольцевую дренажную систему с последующим отводом собранных сточных вод за пределы водосбора.

В небольших водохранилищах, сооружаемых на малых водотоках, в том числе пересыхающих летом (балки, овраги и др.), от излишка биогенов можно освобождаться путем рыбоводных мероприятий, одновременно получая ценную продукцию. Особенно перспективно использование растительноядных рыб, непосредственно утилизирующих первичную продукцию и повышающих эффективность эксплуатации рыбных хозяйств.

Для перехвата биогенов, поступающих в небольшие водоемы с малой водосборной площадью, важно правильное обустройство прибрежной полосы, в частности ее облесение. Показано, что в условиях Московской области лесная полоса шириной 30 м почти полностью задерживает поступление биогенов в водоем с пахотного поля длиной 190 м и уклоном 3°. Лесная полоса не должна вплотную подступать к берегу во избежание загрязнения водоема листовым опадом; оставление полосы луга шириной 15 м устраняет эту возможность.

 Эвтрофикация (от греческого eutrophia хорошее питание) – обогащение водоемов биогенными элементами, сопровождающееся повышением производительности водоема. Эвтрофикация может быть следствием естественного старения водоема, внесения удобрений или загрязнения сточными водами. По уровню эвтрофикации водоема делятся на олиготрофные (слабо евтрофиковани), мезотрофни (середньоевтрофиковани) и эвтрофных (сильно евтрофиковани). Иногда также в отдельную категорию выделяют гиперевтрофни (над-сильно евтрофиковани) водоемы – такие, где эвтрофикация вызывает массовое отмирание биоты и резкое изменение параметров экосистемы.
Для эвтрофных водоемов характерны богатые и разнообразные литоральной и сублиторальной растительность, обилие планктона. Разбалансирована эвтрофикация может приводить к взрывному развитию одноклеточных водорослей («цветение воды»), дефициту кислорода и, как следствие, гибели высшей растительности, рыб и других животных.
Механизм воздействия гипер-эвтрофикации на экосистемы водоемов является следующим:
Воды искусственно евтрофикованои экспериментальной водоемы (внизу справа), разделенные перегородкой от вод водоемы в природно-сбалансированном состоянии (вверху слева) 1. Повышение содержания биогенных элементов в верхних горизонтах воды вызывает бурное развитие растений в этой зоне (в первую очередь планктонных водорослей, а также водорослей – обрастальникив) и увеличение численности зоопланктона, питающийся фитопланктоном. Как следствие прозрачность воды резко снижается, глубина проникновения солнечных лучей уменьшается, что приводит к гибели донных растений от недостатка света. После гибели донных растений происходит гибель организмов, чей жизненный цикл был с ними связан.
2. Водоросли и бактерии, сильно размножились в верхних горизонтах водоема, имеют гораздо большую суммарную поверхность тела и биомассу, чем нормальный растительный комплекс при постоянном уровне эвтрофикации водоема. При этом в ночные часы фотосинтез в этих растениях не идет, а процесс дыхания продолжается, что требует затрат кислорода. В результате в предрассветной часа, особенно в теплые дни, кислород в верхних горизонтах воды оказывается почти исчерпанным, и наблюдается гибель организмов, обитающих в приповерхностных водах, от недостатка кислорода (так называемый «летний замор»).
3. Большое количество отмерших организмов из верхних слоев водоема опускаются на дно, где проходит их разложения. Но, как указано в п. 1, донная растительность гибнет на ранних стадиях эвтрофикации, и производство кислорода здесь почти не происходит. Если же учесть, что биопродуктивность благодаря эвтрофикации увеличивается (см. п. 2), между производством и потреблением кислорода в придонных горизонтах наблюдается дисбаланс, кислород здесь стремительно уходит, и все это приводит к гибели бентосных организмов, даже не связанных с придонной растительностью. Аналогичное явление, наблюдаемое во второй половине зимы в замкнутых мелководных водоемах, известное как «зимние заморы».
4. В донном грунте, лишенном кислорода, проходит ферментация разложение отмерших организмов с образованием таких сильных ядов как фенолы и сероводород, вызывающие отравление организмов во всех эшелонах водоемы, шо вызывает ше более массированное отмирания, как следствие – дополнительное увеличение потребления кислорода при разложении органики, и т. д.
Евтрофикацийний возгорание в северной части Каспийского моря, спутниковый снимок Как следствие массированной и несбалансированной эвтрофикации большая частно флоры и фауны водоема может быть уничтожена, а экосистема водоема – резко и катастрофически изменена.
Надо заметить, что жизнь на Земле с момента его появления сопровождалось проявлениями эвтрофикации, то есть это явление не характерно исключительно для современной геологической эпохи. Именно грандиозным по масштабам евтрофикацийним явлениям мы обязаны наличием залежей угля, нефти, природного газа и других полезных ископаемых биогенного происхождения (вплоть до некоторых видов железных руд).
К биогенных элементов, что именно и вызывают эвтрофикацию, относятся прежде азот, фосфор и кремний в различных соединениях. Наибольшее значение имеют фосфор и азот, являются обязательными элементами тканей любого живого организма.
Концентрация биогенных элементов и их режим зависят от интенсивности биологических и биохимических процессов в водоеме и от количества биогенов, попадающих в водоем со сточными водами и поверхностным стоком на площади водосбору. Концентрации азота и фосфора характеризуют трофность («кормнисть») водоемы. Режим биогенных элементов рассматривают как исходный показатель потенциальной эвтрофикации.
Считается, что чрезмерная эвтрофикация водоемов начинается при содержании в воде азота в концентрации 0.2-0.3 мг / л, фосфора – 0.01-0.02 мг / л.
При переходе от олиготрофных водоемов к мезотрофни и эвтрофных существенно растет доля аммонийного азота в его общей численности.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Из-за значительного объема загрязненных стоков качество воды в регионах не отвечает нормативным требованиям. Общий объем сточных вод, сброшенных в поверхностные водные объекты по России в целом, составляет более 60 км3, в том числе 22,4 км3 неочищенных и сильно загрязненных. Качество поверхностных вод большинства водных объектов Российской Федерации, несмотря на постоянный спад производства и уменьшение объема сброса загрязняющих веществ, по-прежнему не отвечает нормативным требованиям. Крупнейшие реки России, играющие ведущую роль в водоснабжении населения, промышленности и сельского хозяйства – Волга, Дон, Кубань, Обь, Енисей, Лена, Печора – оцениваются как «загрязненные», а их притоки – как «сильно загрязненные».

Нерациональное ведение сельского хозяйства и увеличение объема бытовых и промышленных стоков приводит к значительному росту количеств биогенных и органических веществ, поступающих в водоемы. Это ведет к увеличению трофического статуса водоемов, сокращению их биологического разнообразия, и ухудшению качества воды. Дополнительной причиной эвтрофирования является поступление биогенов на территорию водосборов с атмосферным переносом. Процесс эвтрофирования, начавшись в Западной Европе в 1950-1960 гг., пришел к нам с опозданием на 10-15 лет, и в 1970-1980-е годы охватил практически все водоемы Европейской части России.

В процессе эвтрофирования происходят принципиальные изменения в трофической структуре экосистемы, начиная от бактерио-, фито- и зоопланктона и кончая рыбами. На обогащение биогенными и органическими веществами водные экосистемы отвечают, прежде всего интенсивным развитием водорослей и цианобактерий, переводящих избыток питательных элементов в биомассу. Их бурное размножение вызывает «цветение» воды. Основными агентами «цветения» в большинстве случаев оказываются цианобактерии (aphanizomenon, microcystis, anobaena, oscillatoria). Избыточное развитие цианобактерий и водорослей имеет глубокие отрицательные последствия для пресноводных экосистем. Цианобактерии выделяют в воду метаболиты, токсичные для беспозвоночных, рыб, теплокровных животных и человека. Цветение воды приводит к дефициту кислорода и заилению грунтов водоемов. Создаются благоприятные условия для развития патогенной микрофлоры и возбудителей заболеваний, в том числе и холерного вибриона. В структуре зоопланктона и рыбного населения происходит замещение крупных и долгоживущих форм на мелкие и раносозревающие. Ценные промысловые рыбы с длинным жизненным циклом заменяются «сорными» рыбами с высоким уровнем воспроизводства и высоким приростом продукции. Смена рыбной части сообщества происходит, как правило, к следующей последовательности: лососевые → сиговые → корюшковые → окуневые → карповые. Глубокие перестройки происходят и в растительных компонентах экосистем. Суммарная продукция и биомасса увеличиваются, трофическая структура упрощается, видовое разнообразие падает.

Особая опасность этих процессов заключается в том, что они, видимо, носят необратимый характер.

Сегодня наметился процесс, обратный эвтрофированию водоемов – их ре-олиготрофизация. В водоемах России он связан со спадом промышленного производства в 1990-е годы и со снижением употребления удобрений в сельском хозяйстве. Прежде всего этот процесс замечен на малых реках в Европейской части России. Однако в процессе ре-олиготрофизации структура рыбного населения не возвращается в первоначальное состояние.

Токсификация водоемов . Особую опасность таит в себе поступление в водные экосистемы токсических веществ. В последние годы наблюдается усиленное загрязнение водоемов тяжелыми металлами, фенолами, нефтепродуктами и другими токсикантами. Химические показатели не могут дать полного представления о токсичности среды, они не учитывают синергетические, кумулятивные или антагонистические эффекты от одновременного присутствия многих загрязнителей и поэтому не могут служить надежной основой для прогнозирования экологических последствий загрязнения. Химический анализ дает представление о содержании веществ в воде или в организмах только в момент отбора проб, однако мало что говорит о воздействии загрязнителей на гидробионтов. В то же время хорошо известно, что состояние гидробионтов и интегральная биологическая оценка «здоровья» экосистемы может служить обобщенным показателем экологического состояния водоема.

Проблема токсификации становится актуальной еще тогда, когда концентрация токсикантов в воде не превышает установленных ПДК, поскольку подавляющее большинство гидробионтов обладает ярко выраженными аккумулятивными способностями. В силу этого они сами становятся токсически опасными. Коэффициенты накопления у многих гидробионтов крайне высоки.

Пагубные последствия токсификации водоемов проявляются на организменном, популяционном и биоценотическом уровнях. На организменном уровне нарушаются многие физиологические функции, изменяется поведение особей, снижается темп их роста, снижается резистентность различным стрессовым состояниям внешней среды, возникают повреждения в генетическом аппарате, происходит трансформация исходного генофонда. На популяционном уровне под воздействием загрязнения происходят изменения численности и биомассы, смертности и рождаемости, размерной, возрастной и половой структуры. На биоценотическом уровне происходит изменение видового разнообразия, смена доминантных видов, изменение видового состава, изменение интенсивности метаболизма биоценоза.

Каждый из токсикантов обладает специфическим механизмом действия. Например, тяжелые металлы и их соединения наряду с непосредственным токсическим действием на организм могут вызывать мутагенные, гонадотоксические, эмбриотоксические и другие эффекты. Тяжелые металлы имеют ярко выраженную способность повреждать ферментативные системы организмов. Так, ртуть, серебро и медь, блокируют многие ферментативные реакции. Цинк уже в концентрации 0,065 мг/л ингибирует фосфорилирущее дыхание. Соли тяжелых металлов способны накапливаться в воде и донных отложениях, сохраняя при этом в течение длительного времени активную форму. Тяжелые металлы крайне медленно выводятся из организма, что служит предпосылкой так называемого эффекта пищевой цели - нарастания концентрации в организмах последующих трофических уровней. Например, самые высокие концентрации ртути в пресноводных экосистемах найдены в рыбах.

Токсифицирование пресноводных экосистем связано также с поступлением в них пестицидов. Персистентные пестициды, интенсивно применявшиеся в СССР в 50-60-е годы, прочно вошли в круговорот веществ. По мере их вымывания из почв и накопления в водоемах они оказывают все более пагубное воздействие на водные экосистемы. Это воздействие часто носит скрытый характер и проявляется неожиданно в виде массовой гибели рыб и водных беспозвоночных. В трофических цепях концентрации пестицидов возрастают в среднем в 10 раз при каждом переходе с более низкого уровня на более высокий. Чем длиннее трофическая цепь, тем выше оказывается концентрация в последнем звене. Происходит биологическая концентрация пестицидов в воде и илах до миллиграммов и десятков миллиграммов на 1 кг веса рабы. Поэтому даже самые минимальные концентрации персистентных пестицидов в воде и донных отложениях представляют угрозу высшим трофическим звеньям.

Существенные негативные последствия для пресноводных экосистем имеет загрязнение водоемов и водотоков и другими токсикантами, например антисептиками, такими, как соединения мышьяка, соли фтористоводородной кислоты и т.п.

Смешанное загрязнение токсическими и органическими веществами. В зависимости от того какие компоненты – органические или токсические преобладают, в экосистеме на фоне эвтрофирования, даже при высоких концентрациях кислорода могут происходить процессы угнетения или полной гибели животных. В таких условиях – увеличение биомассы, или рост численности животных наблюдается лишь до класса «грязных» вод. В классе «грязных» вод наблюдается значительное снижение численности и биомассы животных, а следовательно и самоочистительной способности водоема.

Закисление водоемов. В последние годы проблема токсифицирования водоемов в большой степени осложняется подкислением озерной воды в результате выпадения кислых атмосферных осадков, механизм образования которых связан с вымыванием из атмосферы окислов азота и серы, образующихся при сжигании ископаемого топлива и других видах хозяйственной деятельности человека. Подкислению озерной воды сопутствует повышение концентрации токсических металлов, таких, как алюминий, марганец, кадмий, свинец, ртуть, за счет их высвобождения из почв и донных осадков. В озерных водах с повышенной бикарбонатной щелочностью образуются дополнительные количества свободной угольной кислоты, оказывающей токсическое действие на гидробионтов. В России проблема подкисления озерных вод в результате трансграничного переноса с воздушными потоками и выпадения кислых атмосферных осадков, прежде всего окислов серы, наиболее четко обозначилась в Карелии и на Кольском полуострове. В Карельских и Кольских озерах, расположенных на кристаллических породах, вода наименее минерализована, содержит минимальные количества оснований, поэтому здесь процесс антропогенного подкисления вод происходит очень быстро. Из рыб, населяющих воды Карелии и Кольского полуострова, наиболее чувствительными к подкислению вод оказались благородные лососи, гольцы, сиги, хариусы.

При подкислении озерной воды резко снижается общая биомасса гидробионтов и величина первичной продукции водоема, происходит уменьшение видового разнообразия биоценозов. Прежде всего исчезают многие вида, являющиеся важными элементами кормовой базы ценных промысловых рыб. Уровень рН 5,0 и ниже бывает губительным для всех гидробионтов.

Кислотные дожди сказываются также на воспроизводстве рыб. Особенно тяжелая ситуация складывается весной, когда масса сульфатов попадает в талые воды. Наблюдается так называемый, «рН-шок». Именно в этот период происходит выход личинок сиговых и лососевых рыб, проходит нерест хариуса, щуки и окуня. Подкисление особенно отрицательно воздействует на молодь рыб. Резкое снижение рН воды в сочетании с высокими концентрациями металлов имеет губительное влияние на рыб и все сообщество в целом. В некоторых озерах в результате закисления прекращается воспроизводство популяций рыб, и они вымирают. Многие озера России уже практически лишились населения рыб.

Одной из основных причин гибели рыбы в кислых водах является нарушение активного транспорта ионов Na и Сa через жаберный эпителий. Однако в ряде случаев гибель рыб начинается еще задолго до снижения рH до летальных величин и вызывается косвенными причинами, например отравлением алюминием, которое провоцируется увеличением кислотности воды. Алюминий в первую очередь поражает жабры и рыба начинает испытывать острое кислородное голодание. Один «кислотный толчок» может повлечь за собой в течение нескольких дней резкое повышение концентрации алюминия до летальных величин. Поэтому массовая гибель рыбы может произойти в водоеме, в котором средние величины рH не вызывают серьезных опасений.

Термофикация водоемов. В некоторых водоемах дополнительной предпосылкой эвтрофирования является изменение их естественного температурного режима, вызываемое поступлением подогретых вод с предприятий и прежде всего с тепловых и атомных электростанций. Повышение температуры воды способствует увеличению интенсивности метаболизма биоценозов, в частности первичного продуцирования, что является значительным фактором эвтрофирования пресноводных экосистем.

Термофикация водоемов и водотоков влечет за собой изменение их флоры и фауны, часто провоцируя глубокие сдвиги в структуре и функциях исходных экосистем в нежелательных направлениях. Повышение температуры до 35°С благоприятствует развитию токсичных цианобактерий, наиболее устойчивых к подогреву, при одновременном угнетении другого фитопланктона.

Расселение чужеродных организмов. В последние десятилетия резко возросли темпы вселения чужеродных организмов (биологическая инвазия) в водные экосистемы. Основными причинами этого являются интенсификация судоходства и нерегулируемый сброс балластных вод судами. Вселение чужеродных видов негативно влияет на биологическое разнообразие, структуру и функционирование водных экосистем, а патогенные организмы и токсические виды водорослей представляют собой прямую угрозу здоровью человека.

Актуальность этой проблемы в России обусловлена существованием многочисленных гидросооружений, широкой сетью водных коммуникаций, обширными внутренними водоемами. Все это способствует более свободному обмену фауной и флорой между различными, прежде изолированными водными системами.

Преднамеренная интродукция чужеродных видов в экосистемы также таит в себе большой экологический и экономический риск, поскольку вселение нового вида всегда ведет к коренной перестройке пищевых цепей.

Проникновение некоторых организмов в новые для них водные системы часто приносит большой вред рыбному хозяйству, водоснабжению городов, гидротехническим сооружениям, водному транспорту и т.д.

Так, например, благодаря каналам, широко расселился моллюск дрейссена. Этот моллюск во вновь заселяемых им пресноводных водотоках и водоемах быстро достигает высокой численности, что нарушает нормальную работу различных гидротехнических сооружений, в несметных количествах проникает в водопроводные трубы, закупоривает их, а погибая, становится причиной порчи питьевой воды. Вытеснение эти моллюском местных видов водной фауны может вызвать серьезные изменения на экосистемном уровне.

Ярким примером отрицательного влияния на пресноводные экосистемы является широкое расселения головешки-ротана (percottus glenii) во многих мелких водоемах Европейской части России, который практически вытеснил из них все другие виды рыб.

Другим примером такого вселения является появление корюшки (osmerus eperlanus) в Сямозере и вспышка её численности в 1970-1980-е года вместе с началом процессов эвтрофирования, которые привели к перестройке структуры рыбного населения и пищевых цепей озера. Корюшка является активным планктофагом в первые годы своей жизни и столь же активным хищником во взрослом состоянии. Поэтому, с одной стороны, корюшка стала мощным конкурентом в питании другим планктофагам (ряпушке, сигу и уклее), а, с другой, является конкурентом и для хищников, в частности судаку и крупному окуню. Раньше в 1950-е годы Сямозеро считалось ряпушково-окуневым водоемом, а в 1990-е годы трансформировалось в корюшково-окуневое озеро. Корюшка быстро распространилась по всему озеру, освоив все возможные биотопы, и заняла пищевую нишу основного планктофага – ряпушки.

Эвтрофиация - называется процесс ухудшения качества воды из-за избыточного поступления в водоем так называемых «биогенных элементов». Это насыщение водоёмов биогенными элементами, сопровождающееся ростом биологической продуктивности водных бассейнов. Эвтрофикация может быть результатом как естественного старения водоёма, так и антропогенных воздействий. В течение длительного периода, обычно нескольких тысяч лет, озера естественным образом изменяют свое состояние с олиготрофного (бедного биогенными элементами) до эвтрофного (богатого ими) или даже дистрофного, т. е. с высоким содержанием в воде не минеральных, а органических веществ. Однако в XX в. произошла ускоренная антропогенная эвтрофикация многих озер, внутренних морей (в частности, Балтийского, Средиземного, Черного) и рек по всему миру. Эвтрофикация - нормальный природный процесс, связанный с постоянным смывом в водоемы биогенных элементов с территории водосборного бассейна. Однако в последнее время на территориях с высокой плотностью населения или с интенсивно ведущимся сельским хозяйством интенсивность этого процесса увеличилась многократно из-за сброса в водоемы коммунально-бытовых стоков, стоков с животноводческих ферм и предприятий пищевой промышленности, а также из-за смыва избыточно внесенных удобрений с полей.

Основные химические элементы, способствующие эвтрофикации «биогенные элементы» - фосфор и азот.

Эвтрофным водоёмам присущи богатая литоральная и сублиторальная растительность, обильный планктон. Искусственно несбалансированная эвтрофикация может приводить к бурному развитию водорослей (Цветение воды), дефициту кислорода, заморам рыб и животных. Этот процесс можно объяснить малым проникновением солнечных лучей вглубь водоёма и, как следствие, отсутствием фотосинтеза у надонных растений, а значит и кислорода.

Механизм воздействия эвтрофикации на экосистемы водоемов следующий.

1. Повышение содержания биогенных элементов в верхних горизонтах воды вызывает бурное развитие растений в этой зоне (в первую очередь фитопланктона, а также водорослей-обрастателей) и увеличение численности питающегося фитопланктоном зоопланктона. В результате прозрачность воды редко снижается, глубина проникновения солнечных лучей уменьшается, и это ведет к гибели донных растений от недостатка света. После отмирания донных водных растений наступает черед гибели прочих организмов, которым эти растения создают места обитания или для которых они являются вышерасположенным звеном пищевой цепи.

2. Сильно размножившиеся в верхних горизонтах воды растения (особенно водоросли) имеют намного большую суммарную поверхность тела и биомассу. В ночные часы фотосинтез в этих растениях не идет, тогда как процесс дыхания продолжается. В результате в предутренние часы теплых дней кислород в верхних горизонтах воды оказывается практически исчерпанным, и наблюдается гибель обитающих в этих горизонтах и требовательных к содержанию кислорода организмов (происходит так называемый «летний замор»).


3. Отмершие организмы рано или поздно опускаются на дно водоема, где происходит их разложение. Однако, как мы отметили в пункте 1, донная растительность из-за эвтрофикации погибает, и производство кислорода здесь практически отсутствует. Если же учесть, что общая продукция водоема при эвтрофикации увеличивается (см. пункт 2), между производством и потреблением кислорода в придонных горизонтах наблюдается дисбаланс, кислород здесь стремительно расходуется, и все это ведет к гибели требовательной к кислороду донной и придонной фауны. Аналогичное явление, наблюдающееся во второй половине зимы в замкнутых мелководных водоемах, называется «зимним замором».

4. В донном грунте, лишенном кислорода, идет анаэробный распад отмерших организмов с образованием таких сильных ядов, как фенолы и сероводород, и столь мощного «парникового газа» (по своему эффекту в этом плане превосходящего углекислый газ в 120 раз), как метан. В результате процесс эвтрофикации уничтожает большую часть видов флоры и фауны водоема, практически полностью разрушая или очень сильно трансформируя его экосистемы, и сильно ухудшает санитарно-гигиенические качества его воды, вплоть до ее полной непригодности для купания и питьевого водоснабжения.

ЭВТРОФИКАЦИЯ - eutrophication. Избыточное поступление в водоёмы органических и минеральных веществ, преим. азота и фосфора. Э. проявляется при активном развитии гидрофитов. Во время массового отмирания водорослей на дне водоёмов в больших количествах отлагаются их разлагающиеся остатки, на окисление к-рых затрачивается большое количество кислорода. Дефицит кислорода часто приводит к заморам рыбы и др. гидробионтов.

Наиболее изучен процесс эвтрофирования водоемов. Этот естественный процесс, характерный для всего геологического прошлого планеты, обычно протекает очень медленно и постепенно, однако в последние десятилетия, в связи с возросшим антропогенным воздействием, скорость его развития резко увеличилась. Ускоренная, или так называемая антропогенная эвтрофи-кация связана с поступлением в водоемы значительного количества биогенных веществ - азота, фосфора и других элементов в виде удобрений, моющих веществ, отходов животноводства, атмосферных аэрозолей и т. д. В современных условиях эвтрофикация водоемов протекает в значительно менее продолжительные сроки - несколько десятилетий и менее. Антропогенное эвтрофирование весьма отрицательно влияет на пресноводные экосистемы, приводя к перестройке структуры трофических связей гидробионтов, резкому возрастанию биомассы фитопланктона благодаря массовому размножению си-незеленых водорослей, вызывающих «цветение» воды, ухудшающих ее качество и условия жизни гидробионтов (к тому же выделяющих опасные не только для гидробионтов, но и для человека токсины). Возрастание массы фитопланктона сопровождается уменьшением разнообразия видов, что приводит к невосполнимой утрате генофонда, уменьшению способности экосистем к гомеостазу и саморегуляции (Яблоков, 1983). Процессы антропогенной эвтрофикации охватывают многие крупные озера мира - Великие Американские озера, Балатон, Ладожское, Женевское и др., а также водохранилища и речные экосистемы, в первую очередь малые реки. На этих реках, кроме катастрофически растущей биомассы сине-зеленых водорослей, с берегов происходит зарастание их высшей растительностью. Сами же сине-зеленые водоросли в результате своей жизнедеятельности производят сильнейшие токсины, представляющие опасность для гидробионтов и человека.

Балтийское море уязвимо, и перед ним стоит много проблем. Этим летом мы все ещё раз имели возможность убедиться, как далеко зашёл процесс эвтрофикации Балтийского моря, и "цветение" воды из-за массового развития сине-зелёных водорослей - лишь один из наглядных примеров того, насколько серьёзна ситуация. Другие негативные последствия эвтрофикации проявляются в уменьшении прозрачности морской воды и снижении биологического разнообразия. Разнообразие форм жизни в Балтийском море уменьшается, так как на настоящий момент отдельные участки морского дна мертвы, а некоторые биотопы - полностью уничтожены. Это, в свою очередь, привело к уменьшению численности популяций одних видов, в то время, как численность других неконтролируемо увеличивается. Наблюдаемый дисбаланс свидетельствует, что эвтрофикация является одной из наиболее серьёзных проблем, которая стоит перед природной компонентой Балтийского моря.

Эвтрофикация, или эвтрофирование, - процесс обогащения водоемов питательными веществами, особенно азотом и фосфором, главным образом биогенного происхождения. В результате происходит постепенное зарастание озера и превращение его в болото, заполненное илом и разлагающимися растительными остатками, которое в конце концов полностью высыхает. В естественных условиях этот процесс занимает десятки тысяч лет, однако в результате антропогенного загрязнения протекает очень быстро. Так, например, в маленьких прудах и озерах под влиянием человека он завершается всего за нескольких десятилетий.

Эвтрофикация усиливается, когда рост растений в водоеме стимулируется азотом и фосфором, содержащимися в насыщенных удобрениями стоках с сельскохозяйственных угодий, в чистящих и моющих средствах и других отходах. Воды озера, принимающего эти стоки, представляют собой плодородную среду, в которой происходит бурный рост водных растений, захватывающих пространство, в котором обычно обитают рыбы. Водоросли и другие растения, отмирая, падают на дно и разлагаются аэробными бактериями, потребляющими для этого кислород, что приводит к замору рыбы. Озеро заполняется плавающими и прикрепленными водорослями и другими водными растениями, а также питающимися ими мелкими животными. Синезеленые водоросли, или цианобактерии, делают воду похожей на гороховый суп с дурным запахом и рыбным вкусом, а также покрывают камни слизистой пленкой.

Эвтрофикация - повышение уровня первичной продуктивности водоемов из-за повышения в них концентрации биогенных веществ, в основном азота и фосфора; часто приводит к цветению вод.

Эвтрофикация водоемов

Попав в природные водоемы (например, соединений фосфора и азота), биогенные элементы становятся питательной средой для микроорганизмов, в том числе - сине-зеленых водорослей. Продукты жизнедеятельности сине-зеленых - аллергены, токсины, уже на прямую воздействующие на человека. Особенно интенсивно водоросли размножаются в хорошо прогретой воде, то есть летом. Именно поэтому некоторые из нас обнаруживают после купания в заливе на своем теле красные пятна. А если выпить такой воды, даже при условии, что она кипяченая, можно сильно отравиться. Процесс антропогенного эвтрофирования, вызывая быстрые и подчас необратимые нарушения функциональных связей экосистемы, приводит к ухудшению качества воды, подрыву полезной продуктивности, а иногда и к полной утрате природных ресурсов озера. Основные отрицательные последствия этого процесса - массовое развитие планктонных водорослей, появление неприятного запаха и вкуса воды, увеличение содержания органических веществ, снижение прозрачности и увеличение цветности воды. Перенасыщение воды органическим веществом стимулирует развитие сапрофитных бактерий, в том числе болезнетворных, а также водных грибов. В результате жизнедеятельности некоторых водорослей, особенно сине-зеленых, возникают токсические эффекты, приводящие к заболеваниям животных, а в отдельных случаях и человека («гаффская» и «сартландская» болезни).

На окисление огромного количества новообразованного органического вещества расходуется значительная часть содержащегося в озерной воде растворенного кислорода. В результате ценные в промысловом отношении породы рыб (лососевые, сиговые), требовательные к высокому качеству воды, вытесняются низкосортными видами, менее в этом отношении чувствительными.

«Цветение вод» - массовое развитие (вспышка) фитопланктона, вызывающее изменение окраски вод от зеленой (зеленые и сине-зеленые водоросли) и желто-бурой (диатомовые) до красной (динофлагелляты). Интенсивность этого процесса определяется по биомассе водорослей: слабое (0,5 – 0,9 мг/л), умеренное (1 – 9,9 мг/л), интенсивное (10 – 99,9 мг/л) и «гиперцветение» - более 100 мг/л.

Эти явления известны с глубокой древности, но в последнее время они стали часты и весьма интенсивны в результате возросшего антропогенного воздействия на морские экосистемы. Это обусловлено, главным образом, значительным поступлением в водоемы органических веществ (азота, фосфора, калия и др.)

Это приводит к ухудшению кислородного режима (вплоть до заморов), к накоплению в водной среде токсичных органических соединений, что вызывает появление в морях красных приливов.

Эвтрофикация (эвтрофирование, эвтрофикация) - по­вышение биологической продуктивности водоемов в результате накопления в воде биогенных веществ под воздействием естественных и главным образом антропогенных факторов. Основными причинами является поступление огромных количеств биогенных компонен­тов (особенно азота и фосфора), которые поставляются в среду сельскохозяйственным производством (приме­нение удобрений), а также различных детергентов (еже­годно в мире используется свыше 30 млн т мыла) и др.

По данным Б. Хендерсон-Селлерса, основ­ными критериями для характеристики процесса эвтрофикации водоемов являются:- уменьшение концентрации растворенного кисло­рода в воде; - увеличение содержания биогенных компонентов; - увеличение содержания взвешенных частиц, осо­бенно органического происхождения; - последовательная смена популяций водорослей с преобладанием сине-зеленых и зеленых; - возрастание мутности воды (уменьшение проник­новения света); - значительное увеличение биомассы фитопланкто­на (при одновременном уменьшении разнообра­зия видов) и т. д. . Про­цессы эвтрофикации охватили многие крупные пресно­водные водоемы США и Канады (Великие Американс­кие озера), Японии, Европы (Женевское, Ладожское, Онежское озера, Балатон и др.), а также многие морс­кие бассейны (Средиземное, Черное, Балтийское и др.). Поскольку эвтрофирование водоемов стало серьезной глобальной экологической проблемой, по линии ЮНЕСКО начаты работы по мониторингу внутренних вод и контролю за эвтрофированием водоемов земного шара.

Красный прилив – экологическое явление, вызванное чрезмерным сбросом в океан органических веществ и массовой вспышкой пирофитовых водорослей. Проведенные исследования показали, что после сильных дождей большое количество питательных веществ (особенно азота и фосфора) смывается с побережий и одновременно приток пресных вод понижает соленость океана, а подъем глубинных вод выносит к поверхности дополнительные органические вещества, которые и стимулируют рост и массовое размножение пирофитовых водорослей. Все это приводит к большим экономическим потерям, так как пустеют пляжи, которые покрываются массой разлагающейся рыбы. В последние годы в Мировом океане в результате сброса огромного количества органических веществ участились красные приливы, которые отмечаются у берегов Индии, Австралии, Японии, Скандинавии, в Черном и Средиземном морях. В связи с этим необходимо организовывать мониторинг за содержанием в водах океана токсичных видов фитопланктона, вызывающих эвтрофикацию и красные приливы.

Негативные экологические последствия эвтрофирования водоемов

    ПРОЦЕССЫ ЭВТРОФИКАЦИИ В ВОЛГОГРАДСКОМ ВОДОХРАНИЛИЩЕ И ПУТИ ИХ ПРЕДОТВРАЩЕНИЯ

процессы эвтрофикации

в волгоградском водохранилище

и пути их предотвращения

Мамонтова А.С. (ПР-051), Шепелева Е.С. (ассистент кафедры ЭиП), Научный руководитель – Новиков В.В., к.с.-х.н., доцент

Волжский гуманитарный институт (филиал) ВолГУ

На озёрном участке Волгоградского водохранилища с застойными зонами усиливаются процессы зарастания водной растительностью (эвтрофикация), что является причиной ухудшения качества воды и обеднения видового состава экосистемы. Эвтрофикация приводит к развитию сине-зеленых водорослей Cyanophyta , которые вызывают «цветение» воды, ухудшая её качество. Поэтому эта проблема актуальна для г. Волжского, осуществляющего водозабор из Волгоградского водохранилища .

Для борьбы с сине-зелеными водорослями применяются современные методы биологической, физико-химической очистки поверхностных вод, а также метод альголизации – вселение одноклеточной зеленой водоросли – хлореллы, проявляющей антагонизм к сине-зеленым водорослям . Последний метод используют в Волгоградском отделении ГосНИОРХ, учёными которого показано улучшение состояния водоема (рис. 1).

    Вышеуказанный метод проходит апробирование на Волгоградском и Цимлянском водохранилищах, где получены положительные результаты. В дальнейшем, при подтверждении положительных результатов, намечается его широкое применение на водоемах Волжско-Камского каскада, в том числе Куйбышевском водохранилище и других водоемах, где также существует данная проблема.

Целью нашей работы было проследить динамику цветения воды Волгоградского водохранилища в связи с проводимой альголизацией.

В период наибольшего развития биомассы сине-зеленых водорослей нами были отобраны пробы фитопланктона в 73 точках Волгоградского водохранилища в июле 2006 и 2007 гг. и проанализированы в экологической учебной лаборатории ВГИ ВолГУ по ГОСТ 17.1.4.02 – 90.

Содержание хлорофилла А в пробах варьировало от 0,95 мкг/л в верховье залива Пичуга до 8,87 мкг/л в середине приплотинного участка. В ряде заливов и створов в 2007 г. уровень биомассы снизился по сравнению с 2006 г. Однако, на приплотинном участке, наоборот, наблюдалось увеличение уровня биомассы. Данная динамика прослеживается и в 2007-2008 гг. (Рис. 2). В ряде заливов – Ерзовка, Дубовка, где особенно велико антропогенное воздействие, отмечается увеличение биомассы.

III . Водные экосистемы.

Лимитирующие факторы водных экосистем:

1. Соленость – содержание растворимых солей, главным образом хлорида натрия, в водной массе;

2. Глубина проникновения солнечных лучей;

3. Количество кислорода;

4. Доступность питательных элементов;

5. Температура воды.

По степени солености вод водные экосистемы подразделяются на два больших класса.

Солоноводные (морские) Пресноводные

Океаны - озера, водохранилища

Устья рек (эстуарии) - пруды

Прибрежные болота - болота

Коралловые рифы - реки и ручьи (водотоки)

Основные зоны океана.

В любом из океанов земного шара можно выделить две основные зоны: прибрежную и открытый океан.



Вверх