Спектр периодической последовательности. Практическая работа «Расчет и построение спектра периодической последовательности прямоугольных импульсов. Спектры сигналов с импульсной модуляцией

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов t u и максимальным значением . Найдем разложение в ряд такого сигнала, выбрав начало координат, как показано на рис. 15. При этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих =0, и нужно рассчитать только коэффициенты .

постоянная составляющая

(2.28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса , деленная на весь период, т.е. , т.е. то же, что получилось и при строгом формальном вычислении (2.28).

Вспомним, что частота первой гармоники ¦ 1 = , где Т – период прямоугольного сигнала. Расстояние между гармониками D¦=¦ 1 . Если номер гармоники n окажется таким, что аргумент синуса , то амплитуда этой гармоники первый раз обращается в нуль. Это условие выполняется при . Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют «первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

С другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульса N=S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных p, то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть при , где k – любое целое число. Так, например, из (2.22) и (2.23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S=2 , то и N=2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 /U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов и максимальным значением. Найдем разложение в ряд такого сигнала, выбрав начало координат как показано на рис. 15. при этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих=0, и нужно рассчитать только коэффициенты.

- 0 T t

постоянная составляющая
(28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса
, деленная на весь период, т.е.
, т.е. то же, что получилось и при строгом формальном вычислении (28).

Вспомним, что частота первой гармоники  1 =, где Т – период прямоугольного сигнала. Расстояние между гармониками= 1 . Если номер гармоники n окажется таким, что аргумент синуса
, откуда. Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют«первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

(29)

с другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульсаN = S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных , то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть
при
, гдеk – любое целое число. Так, например, из (22) и (23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S =2 , то и N =2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 / U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

2.5. Спектры при уменьшении длительности импульса и периода сигнала.

Регулировать скважность S = T / t n можно либо изменением длительности импульса t n при T =const, либо изменением периода Т при t n =const. Рассмотрим спектры сигналов при этом.

    T =const, t n =var. Частота первой гармоники f 1 =1/ T = const и f = f 1 = const. Первый нуль N = T / t n и по мере укорочения импульса t n смещается в область гармоник с большими номерами. При t n 0 N , спектр получается дискретным и f = f 1 , бесконечно широкий и с бесконечно малыми амплитудами гармоник.

    t n =const, T =var. Будем увеличивать период Т , тогда частота первой гармоники f 1 и расстояние между спектральными линиями f будут уменьшаться. Так как f = f 1 =1/Т , то спектральные линии будут смещаться в область более низких частот и «плотность» спектра возрастет. Если Т , то сигнал из периодического становится непериодическим (одиночный импульс). В этом случае f 1 = f 0, т.е. спектр из дискретного превращается в непрерывный, состоящий из бесконечно большого числа спектральных линий, находящихся на бесконечно малых расстояниях друг от друга.

Отсюда следует правило: периодические сигналы порождают дискретные (линейчатые) спектры, а непериодические – сплошные (непрерывные).

При переходе от дискретного спектра к непрерывному ряд Фурье заменяется интегралом Фурье. Наиболее просто эта замена выполняется, если использовать запись ряда Фурье в комплексной форме (16) и (17). Интеграл Фурье для непрерывного спектра записывается

, (30)

где
(31)

Функция F (j ) называется спектральной функцией или спектральной плотностью , которая зависит от частоты. Формулы (30) и (31) называют в совокупности односторонним преобразованием Фурье , которое является частным случаем более общего преобразования Лапласа и получается заменой в преобразовании Лапласа комплексной переменной р на j .

Спектральную функцию можно представить как огибающую коэффициентов ряда Фурье, т.е. как предел линейчатого спектра периодической функции при Т . Функция F (j ) может быть действительной или комплексной. Считая в общем случае
, мы получаем две частотные характеристики:
-амплитудный спектр , т.е. зависимость амплитуды спектральных составляющих от частоты, и () фазовый спектр , т.е. закон изменения фазы спектральных составляющих сигнала от частоты. Можно показать, что амплитудный спектр – всегда четная, а фазовый спектр – всегда нечетная функция . Спектральную функцию для многих непериодических сигналов (одиночных импульсов различной формы) наиболее легко и просто находить с помощью таблиц оригиналов и изображений в преобразовании Лапласа, которые приводятся в учебной и справочной литературе. После нахождения изображения по Лапласу F (p ) для заданной непериодической функции f (t ) , спектральная функция находится

(32)

Итак, согласно (30) непериодическая функция f (t ) представляется совокупностью бесконечно большого числа гармоник с бесконечно малыми амплитудами
во всем диапазоне частот от - до +, т.е. представление f (t ) в виде интеграла Фурье подразумевает суммирование незатухающих гармонических колебаний бесконечного сплошного спектра частот.

    описание лабораторной установки

Работа выполняется на блоке «Синтезатор сигнала», функциональная схема которого приведена на рис. 16.

Блок содержит генераторов Г1-Г6 шести первых гармоник сигнала. Частота первой гармоники равна 10 кГц. Гармонический сигнал с выхода n-го генератора через фазовращатель Ф n и аттенюатор А n поступает на сумматор. Фазовращателями задают начальные фазы  n гармоник, а аттенюаторами – их амплитуды А n .

На выходе сумматора в общем случае получается сумма шести гармоник сигнала

.

С выхода сумматора сигнал подается на вход Y осциллографа. Для его внешней синхронизации используется специальный импульсный сигнал, подаваемый с гнезда «Синхр.» на вход Х осциллографа. Для установки и контроля амплитуд гармоник предусмотрена возможность отключения любой из гармоник. Включив только генератор n-ой гармоники, можно установить ее амплитуду аттенюатором А n и оценить ее значения с помощью осциллографа. Каждый фазовращатель с помощью переключателя позволяет установить требуемое дискретное значение начальной фазы гармоники, либо отключить генератор.

Лабораторная работа №1.

Представление периодических импульсных

Сигналов рядом Фурье.

Цель работы – Изучение спектрального состава периодической последовательности импульсов прямоугольной формы при различных частотах следования и длительности импульсов.

Введение

Для, передачи хранения и обработки информации используются периодические импульсные сигналы, которые могут быть математически представлены рядами Фурье. Существует временное рис.1 и частотное представление электрических сигналов рис.2.

Рис.1. Временная форма представления периодической

последовательности прямоугольных импульсов.

Представление сигнала во временной области позволяет определить его параметры, энергию, мощность и длительность. Для представления сигналов в частотной области в виде спектра используется преобразования Фурье. Знание частотных свойств позволяет решать задачи идентификации характеристик сигнала (определение его наиболее информативных параметров), фильтрации (выделение полезного сигнала на фоне помех), выбора частоты дискретизации непрерывного сигнала. Одним из важнейших параметров сигнала является ширина частотного спектра, т. к. именно этот параметр оказывается определяющим при согласовании сигнала с аппаратурой обработки и передачи информации.

Основные формулы и определения.

Периодическую функциюu(t) с периодом T можно представить рядом Фурье


(1)

Колебание с частотой называется первой гармоникой; (n =1) колебание с частотой - второй гармоникой (n =2), c частотой - n-й гармоникой.

Выражение (1) с использованием тождества

может быть переписано в виде

, (2)

Коэффициенты и определяется по формулам

Величина выражает среднее значение функции за период, она, называется также постоянной составляющей и вычисляется по формуле

Формулы (3) решают задачу анализа : по заданной периодической функции нужно найти коэффициенты Фурье и . Формулы (1) и (2) решают задачу гармонического синтеза : по заданным коэффициентам и нужно найти периодическую функцию .

Анализ спектра последовательности прямоугольных импульсов

Совокупность амплитуд и частот гармонических составляющих называютамплитудной-частотной характеристикой (АЧХ), а зависимость от частот гармоник фазо-частотной характеристикой (ФЧХ). Амплитудно-частотный спектр прямоугольных импульсов может быть представлен графически рис.2.

Рис.2. АЧХ и ФЧХ периодической последовательности

прямоугольных импульсов.

Пусть , представляющая последовательность прямоугольных импульсов рис.1 с амплитудой , длительностью и периодом описывается уравнением

Тогда амплитуды и фазы для гармонических составляющих определяются уравнением:

(4)

Величина называется скважностью и обозначается буквой . Тогда уравнения (4) принимают вид

где n =1, 2, … . (5)

Для вычисления мощности сигналов представленных рядом Фурье в теории информации используют формулы в которых значение сопротивление R = 1 Ом. В этом случае напряжения u и токи i равны, поскольку i = u/R.

Мощность постоянной составляющей Р 0 будет

а мощность переменной составляющей Р n для n-й гармоники

(6)

Формула для результирующей мощности примет вид

ЗАДАНИЕ

1. Выполните анализ периодической последовательности прямоугольных импульсов

1.1 По номеру варианта N, полученного у преподавателя, определите из таблицы 1 значение скважности и круговой частоты .

Таблица 1

№, вар q , рад/с №, вар q , рад/с
3,24 47,25 8,50 69,22
6,52 97,50 6,72 78,59
5,93 14,45 2,30 19,44
7,44 15,12 3,59 37,96
1,87 70,93 4,48 78,27
5,46 91,65 2,99 42,48
6,40 86,40 6,18 75,45
1,27 48,98 1,81 57,64
2,97 40,13 3,22 15,46
1,09 85,95 3,66 55,25
2,13 57,30 3,27 27,58
7,99 66,90 4,64 3,68
4,61 31,55 3,71 43,73
1,95 25,24 4,33 70,44
2,66 6,61 3,38 52,07
1,10 18,37 6,92 26,17
4,06 70,24 4,95 55,52
2,40 35,10 6,51 82,64
9,42 33,96 3,32 68,07
6,13 43,25 7,75 32,49
7,36 52,37 5,71 26,68
2,33 24,84 2,42 96,02
2,18 25,34 16,99 88,59
5,80 12,99 62,23 50,21
1,68 41,16 37,54 20,70

1.2 а) Определите 11 первых значений коэффициентов u n (n=0, 1, 2, ... , 10), считая Е=1 В, используя электронные таблицы "Exel" (или калькулятор, или другой программный продукт) по формулам (5) и и внесите их в соответствующую строку u n таблицы 2.

1.3 б) Вычислите мощности p n и запишите их в таблицу 2.

Таблица 2

w w 1 2w 1 10w 1
u n u 0 u 1 u 2 u 10
j n j 1 j 2 j 3 j 10
p n p 0 p 1 p 2 p 10

и графика амплитудно-частотной характеристики (АЧХ) рис.3, а).

1.4 Постройте фазо-частотную характеристику (ФЧХ) периодической последовательности импульсов подобно рис.2) в которой изменение знака u n эквивалентно сдвигу фазы на p.

1.5 Вычислите удельную (на сопротивлении 1 Ом) мощность спектра первых 10 гармоник по формуле

.

2. Задача синтеза.

2.1. Используя уравнение (1), представьте сумму первых 10 гармоник подставив в виде уравнения

по вычисленным в таблице значениям u n для , , , …. и постройте временную зависимость на периоде Т, например.

из таблицы 3

в виде графика 4 во временном диапазоне одного периода Т= , используя текущее время t = nD t - t/2, с шагом где n=0,1,2, … ,10 , показанного на рис. 3 .

Рис. 3. Временной интервал для синтеза сигнала

Для определения спектров для различных видов импульсной модуляции найдем спектр самого носителя. Возьмем импульсный носитель с импульсами прямоугольной формы (рис. 3.10).

Рис. 3.10 Периодическая последовательность прямоугольных импульсов

Последовательность таких импульсов можно представить рядами Фурье.

, (3.32)

где - комплексная амплитуда k-ой гармоники;

- постоянная составляющая.

Найдем комплексные амплитуды для указанных пределов (рис. 3.10).

(3.33)

Постоянная составляющая

(3.34)

Подставим (3.33) и (3.34) в (3.32) и после преобразования получим:

(3.35)

Из выражения видно, что спектр линейчатый с огибающей, повторяющей спектр одиночного импульса (рис. 3.11). Другими словами, для импульсов одинаковой формы решетчатая функция вписывается в непрерывную S(jω).

Рис. 3.11 Спектр периодической последовательности импульсов

Постоянная составляющая А 0 /2 имеет при этом вдвое меньшее значение. Расстояние между составляющими гармоник равно основной частоте носителя ω 0 =2π/Т. Отсюда следует, что изменение периода Т следования импульсов приводит к изменению плотности дискретных составляющих, а изменение скважности Т/τ при неизменном периоде (т.е. изменение τ) вызывает сужение или расширение огибающей с сохранением ее формы, оставляя неизменным расстояние между линиями дискретного спектра. При достаточно большой плотности этих линий, когда между узлами размещается по крайней мере несколько линий спектра (Т>>τ), ширину спектра ω импульсного носителя можно считать практически такой же, как и для одиночного импульса. С приближением τ к Т эти спектры могут оказаться различными по ширине. На Рис. 3.12 изображены деформации спектра импульсного носителя при изменении Т, а на Рис. 3.13 при изменении τ для импульсов прямоугольной формы.

Рис. 3.12 Изменение характера спектра носителя при изменении

периода Т следования импульсов прямоугольной формы.

При неизменной амплитуде импульсов согласно выражению (3.25) огибающая дискретного спектра увеличивается пропорционально увеличению площади импульсов (рис. 3.13).

Следует отметить, что периодической последовательности в чистом виде не бывает поскольку любая последовательность имеет начало и конец. Степень приближения зависит от числа импульсов в последовательности. Поэтому для строгого описания импульсного носителя последний должен рассматриваться как одиночный импульс, представляющий собой пакет элементарных импульсов определенной формы. Такой сигнал имеет непрерывный спектр.

Однако по мере накопления числа импульсов в последовательности ее спектр дробится и деформируется таким образом, что все более приближается к решетчатому.

Рис. 3.13 Изменение характера спектра носителя при изменении

длительности импульса τ для импульсов прямоугольной формы.

3.7 Спектры сигналов с импульсной модуляцией

Спектры всех видов импульсных модуляций имеют сложное строение, а выводы зачастую получаются слишком громоздкими. По этой причине вопрос о спектральном составе сигналов импульсной модуляции рассмотрим, опуская в ряде случаев слишком сложные промежуточные преобразования. Такое рассмотрение позволяет показать подход к задаче, наметить путь решения и проанализировать окончательные выводы.

Найдем спектр при амплитудно–импульсной модуляции (АИМ). Для упрощения модулирующую функцию f(t) выберем, содержащую одну гармонику sint

Раскрывая это выражение и заменяя произведение синуса на косинус

. (3.36)

Из (3.36) видно, что в спектре сигнала содержится частота модулирующей функции и наивысшие гармонические составляющие kω 0 ±  с двумя боковыми спутниками. При этом наивысшие гармонические составляющие вписываются в огибающую спектра одиночного импульса носителя. На Рис. 3.14 показан спектр при амплитудно-импульсной модуляции.

Рис. 3.14 Спектр при амплитудно-импульсной модуляции.

Ширина спектра при АИМ не изменяется, так как величина амплитуд, которые нужно принимать во внимание при определении ширины, зависит только от соотношения τ /Т, а эта величина при АИМ постоянна. Если последовательность импульсов модулируется сложной функцией от  min до  max , то в спектре после модуляции появляются не спектральные линии, а полосы частот  min …  max и кω 1 ±( min … max)

Рассмотрим особенности спектра при фазо-импульсной модуляции (ФИМ), которая относится к разновидности время-импульсной модуляции (ВИМ).

При ФИМ – модуляции (Рис. 3.15) пунктирной линией показано изменение модулирующей функции во времени. Вертикальные пунктирные линии соответствуют положению переходных фронтов немодулированнойпоследовательности импульсов. Из рисунка видно, что положение импульсов (фаза) меняется относительно так называемых тактовых точек t k , соответствующих положению на оси времени передних фронтов немодулированной последовательности импульсов. Смещение одного из импульсов на время ∆t k показано на рисунке.

Рис. 3.15 Иллюстрация ФИМ – модуляции.

Рис. 3.16 Положение импульса без модуляции

и при наличии модуляции.

На рис. 3.16 пунктиром показан немодулированный импульс, расположенный симметрично относительно тактовой точки, соответствующей началу отсчета. При модуляции импульс сместится на величину
, где t 1 соответствует новому положению переднего фронта, а t 2 – новому положению заднего фронта. Будем считать, что максимальное смещение импульса ∆t K соответствует значению U(t) = 1.

Если модулирующая функция изменяется синусоидально, то для модулированного импульса моменты времени, соответствующие положению переднего и заднего фронтов будет:


(3.37)


(3.38)

В последнем выражении (3.38) значение времени равно (t-τ) поскольку задний фронт смещен относительно переднего на величину длительности импульса.

Для получения спектра при ФИМ необходимо подставить вместо τ значение t 2 -t 1 , поскольку t 1 и t 2 являются текущими координатами. Отразить смещение осевой линии можно, заменяя время t временем
. В результате подстановки этих значений в (3.35) получим:


(3.39)

Подставляя в выражение (3.39) значения t 1 и t 2 и после преобразования получим выражение, совпадающее со спектром при АИМ, только около составляющей основной частоты и каждой высшей гармоники появились не одна нижняя и одна верхняя боковые спектральные линии, а полосы боковых гармоник с частотами (kω 0 ±n).

Примерный вид спектра показан на рис. 3.17. Однако боковые спутники быстро убывают, так как в них входят Бесселевы функции.

Рис. 3.17 Спектр при фазо-импульсной модуляции.

Спектры при ШИМ и ЧИМ по своему составу оказываются такими же, как и спектр при ФИМ – модуляции.

Несмотря на то, что характер спектра при модуляции носителя изменяется и зависит от вида модуляции, его ширина остается такой же, как и для одиночного импульса и определяется в основном длительностью импульсов τ.

Передача измерительной информации в телеметрических устройствах с временным разделением каналов часто оказывается более предпочтительной, чем передача при помощи частотного разделения каналов, так как при временном разделении не требуется фильтров и, кроме того, ширина полосы пропускания не зависит от числа каналов.

В зависимости от вида модуляции в каналах (первичной) и вида модуляции несущей частоты (вторичной) существуют основные типы телеизмерительных устройств с временным разделением каналов: АИМ-ЧМ, ШИМ-ЧМ, ФИМ-АМ, ФИМ-ЧМ, КИМ-АМ, КИМ-ЧМ.

Системы с временным разделением каналов применяются для передачи измерительной информации с искусственных спутников и космических кораблей.

Спектральный анализ периодических сигналов

Как известно, любой сигнал S(t), описываемый периодической функцией времени, удовлетворяющей условиям Дирихле (модели реальных сигналов им удовлетворяют), можно представить в виде суммы гармонических колебаний, называемой рядом Фурье:

где - среднее значение сигнала за период или постоянная составляющая сигнала;

Коэффициенты ряда Фурье;

Основная частота (частота первой гармоники); n=1,2,3,…

Совокупность значений An и n (или при разложении по синусоидальным функциям n) называется спектром периодической функции. Амплитуды гармоник An характеризуют амплитудный спектр, а начальные фазы n (или "n) - фазовый спектр.

Таким образом, спектр периодического сигнала представляется в виде постоянной составляющей и бесконечного числа гармонических колебаний (синусоидальных или косинусоидальных) с соответствующими амплитудами и начальными фазами. Частоты всех гармоник кратны основной частоте. Это означает, что если периодический сигнал следует с частотой, например, 1 кГц, то в его спектре могут быть только частоты 0кГц, 1 кГц, 2 кГц и т.д. В спектре такого периодического сигнала не могут присутствовать, например, частоты 1,5 кГц или 1,2 кГц.

На рис. 1. приведены амплитудный и фазовый спектры некоторого периодического сигнала. Каждая гармоническая составляющая изображена вертикальными отрезки, длины которых (в некотором масштабе) равны ее амплитуде и фазе. Как видно, спектр периодического сигнала является дискретным или, как говорят, линейчатым.

С целью упрощения расчетов часто используют вместо тригонометрической формы записи ряда Фурье комплексную форму его записи, коэффициенты которой объединяют коэффициенты An и n:


Совокупность комплексных амплитуд n называют комплексным спектром периодического сигнала.

Расчет спектров сигналов в комплексной области значительно проще, поскольку нет необходимости рассматривать отдельно коэффициенты и тригонометрической формы записи ряд Фурье.

Спектр периодической последовательности прямоугольных импульсов

Прежде чем рассмотреть спектр периодической последовательности прямоугольных импульсов, рассмотрим параметры этих импульсов.

Параметрами одиночного импульса являются амплитуда, длительность импульса, длительность фронта, длительность спада, спад (скол) плоской вершины.

Амплитуда импульса Um измеряется в вольтах.

Длительность импульса измеряется по основанию, на уровнях 0,1Um или 0,5Um. В последнем случае длительность импульса называется активной. Измеряется длительность импульса в единицах времени.

Длительность фронта tф и спада tс измеряется либо на уровне 0 - Um, либо на уровне (0,1-0,9)Um. В последнем случае длительность фронта и спада называют активными.

Скол плоской вершины характеризуется коэффициентом скола? = ?u/Um,

где?u - значение скола; Um - амплитуда импульса.

Параметрами серии импульсов являются период повторения T, частота следования f, скважность Q, коэффициент заполнения, средние значения напряжения Uср и среднее значение мощности Pср.

Период повторения T = tи +tп, где T - период, tи - длительность импульса, tп - длительность паузы. Измеряются T, tи, и tп в единицах времени.

Частота следования f = 1/T измеряется в герцах и т.д.

Скважность Q = T/tи - величина безразмерная.

Коэффициент заполнения = tи/T - величина безразмерная.

Среднее значение напряжения

Перейдем к рассмотрению амплитудного и фазового спектров сигнала в виде периодической последовательности прямоугольных импульсов длительностью и амплитудой Um, следующих с периодом T (рис. 2).


Рассмотрим случай, когда середина импульса является началом отсчета времени. Тогда на периоде сигнал описывается выражением

Комплексные амплитуды гармонических составляющих.

Функция является знакопеременной и меняет свой знак на обратный при изменении аргумента n1 на величину?щ = 2р/ф, что соответствует приращению фазы на.

где k - порядковый номер интервала на шкале частот, отсчитываемый с нулевой частоты.

Таким образом, амплитуды гармоник, включая постоянную составляющую, определяются выражением:

а фазы - выражением =1, 2,3,…

Функция характеризует изменение амплитудного спектра сигнала в зависимости от частоты. Она обращается в нуль, при значениях её аргумента, кратных. Отсюда следует, что гармоники с номером n = , где = 1,2,3,…будут иметь нулевые амплитуды, т.е. отсутствовать в спектре.

Как известно, отношение называется скважностью последовательности импульсов. Таким образом, в спектре рассматриваемой последовательности будут отсутствовать гармоники, номера которой кратны скважности.

Если начало отсчета времени связать с началом импульса, то амплитудный спектр останется без изменений, а фазы гармоник в соответствии со свойством преобразования Фурье получат дополнительный фазовый сдвиг nщ1ф/2. В результате

Выражения для тригонометрической формы записи ряда Фурье при отсчете времени от середины и начала импульса соответственно имеют вид:


На рис. 3. приведены амплитудные и фазовые спектры рассматриваемой последовательности прямоугольных импульсов при скважности, равной двум.

Фазовые спектры показаны соответственно при отсчете времени от середины и начала импульса. Пунктирные линии на амплитудных спектрах характеризуют поведение модуля спектральной плотности одиночного импульса.

Выражение для значений амплитуд и фаз гармоник легко получить в виде, удобном для расчетов. Так при отсчете времени от середины импульса для скважности, равной двум, имеем



Вверх