Сообщение на тему развитие космонавтики. Перспективы развития российской космонавтики. Начало развития космической программы в ссср

Не так давно на нашем ресурсе , посвященная величайшим деятелям в сфере освоения космоса. В список попали и Николай Коперник с Исааком Ньютоном, чьи заслуги не вызывают никаких сомнений, и «звезда» современного освоения космоса , который обещает сделать ракеты такими же привычными для землян, как самолеты. Как и наши внимательные читатели, мы посчитали, что будет несправедливым оставлять без внимания советских и российских деятелей космоса, но было бы лучше дать им больше пространства для памяти.

К сожалению, дорога к звездам усыпана драгоценными заслугами людей, о которых помнят лишь единицы. С уважением относясь к нашему общему космическому прошлому, мы постарались напомнить вам о людях, благодаря которым слова «Россия» и «космос» в некотором смысле синонимичны. Отметим, что не только Циолковский и Королев вершили космическую судьбу будущего, но, увы, лишь единицы людей могут назвать еще несколько имен.

В этом списке вы не встретите космонавтов - , как и мы писали. И не будем забывать, что это не мемориал, а статья о десяти российских важнейших деятелях в сфере освоения космоса. Никто не будет забыт благодаря нашим совместным усилиям.


Мало кто знает о судьбе этого гениального революционера конца 19 века, которому принадлежит идея первого ракетного летательного аппарата с качающейся камерой сгорания для управления вектором тяги. Этот оригинальный проект летательного устройства был разработан Кибальчичем 23 марта 1881 года, как говорят источники, незадолго до смертной казни через повешение, но (!) уже после того, как его арестовали и приговорили 17 марта 1881 года. Вместе с другими первомартовцами (группа из восьми народовольцев, участвовавших в подготовке и убийстве императора Александра II в марте 1881 года), Кибальчич был казнен 15 апреля 1881 года по новому стилю.

Примечательно то, что просьба инженера о передаче рукописи в Академию наук удовлетворена не была, и о проекте широкая общественность узнала лишь в 1918 году. Однако, в СССР были выпущены почтовые марки, посвященные Кибальчичу, а его именем был назван кратер на Луне.

Сергей Королев (1906 – 1966)


Имя Королева стало нарицательным для основоположника практической космонавтики. Советский ученый, конструктор и организатор производства ракетно-космической техники и ракетного оружия СССР был одной из крупнейших фигур 20 века в сфере освоения космоса, в частности, ракетостроения и кораблестроения. Он принимал непосредственное участие в пионерской разработке баллистических ракет, создании первого искусственного спутника Земли, подготовке к отправке первого человека в космос, запуске аппаратов на Луну, разработке лунных проектов и орбитальной станции. Его вклад в развитие советской - и общемировой - космонавтики сложно переоценить, поскольку под его руководством, можно сказать, не только стала первой и передовой космической державой, но и надолго вышла вперед на фоне ракетостроения. Деятельность Сергея Королева, ко всему прочему, обеспечила стратегический паритет. От запуска первого искусственного спутника Земли до первого космонавта — нигде не обошлось без Королева.

Валентин Глушко (1908 – 1989)


Мало кто знает, что Валентин Глушко, крупнейший советский ученый в области ракетно-космической техники, был одним из пионеров в этой области, а его деятельность положила начало отечественному жидкостному ракетному двигателестроению. Подробнее о твердотопливных и жидкотопливных ракетных двигателях можно . C 1977 года Глушко был генеральным конструктором легендарного НПО «Энергия».

На счету изобретений и конструкций, в создании которых Глушко принимал непосредственное участие, - первый в мире электротермический ракетный двигатель (1928–1933), первый советский жидкостный ракетный двигатель ОРМ (1930–1931), семейство ракет РЛА на жидком топливе (1932–1933) и мощные жидкостные ракетные двигатели, которые ставили практически на все отечественные ракеты, летавшие в космос до настоящего момента. Эти двигатели выводили на орбиту первый и последующие спутники Земли, космические корабли с Юрием Гагариным и другими космонавты, а также участвовали в полетах к Луне и планетам Солнечной системы. Базовый блок орбитальной станции «Мир» также был разработан Глушко. Этот человек внес и колоссальный личный вклад в мировую науку, благодаря многолетним работам по созданию фундаментальных справочников по термическим константам, термодинамическим и теплофизическим свойствам различных веществ и другим.

Алексей Богомолов (1913 – 2009)


Алексей Богомолов был, возможно, первым из советских ученых, который понял необходимость создания больших и эффективных наземных антенн. Под его руководством в 1960–1965 годах были построены антенны с диаметром зеркала 32 метра, а затем и 64 метра. Они обеспечивали связь с межпланетными исследовательскими спутниками и аппаратами, которые изучали Солнечную систему и ее планеты. Без этих антенн научная информация автономных аппаратов «Венера-15», «Венера-16», «Вега», «Фобос» и других, возможно, затерялась бы на окраинах нашей системы. Более того, картографирование поверхности северного полушария Венеры и создание атласа ее поверхности было проведено именно силами аппаратов «Венера-15» и «Венера-16». Учитывая долгое и томительное ожидание, связанное с надеждами на цветущую поверхность этой, как оказалось, свирепой планеты, специально созданный Богомоловым космический радиолокатор был крайне необходим.

Работы Богомолова и коллектива под его руководством в сферах радиолокации, телевидения, передачи и хранения информации, а также повышения ее достоверности и точности, легли в основу создания уникальных комплексов траекторных и телеметрических измерений для ракетно-космической и авиационной техники.

Фридрих Цандер (1887 – 1933)


В 1909 году Фридрих Цандер стал первым советским ученым и изобретателем, работающим в области теории межпланетных полетов и реактивных двигателей, который высказал мысль о том, что в качестве горючего целесообразно использовать элементы конструкции межпланетного корабля. Спустя десять лет систематических исследований проблем ракетно-космической науки и техники Цандер предложил свою основную идею: сочетать ракету с самолетом для взлета с Земли, затем сжечь в полете самолет в качестве горючего в камере ракетного двигателя для увеличения дальности полета ракеты. В том же, 1924 году, Цандер разработал идею использования Луны или других планет, а точнее их гравитационное поле или атмосферу, для увеличения скорости полета на другие планеты. Его авторству принадлежит идея планирующего спуска с торможением в атмосфере планеты. Советский ученый предложил схему и конструкцию двигателя внутреннего сгорания, которому не был нужен воздух.

Эти и многие другие идеи и разработки плодовитого ученого и инженера внесли вклад в развитие советской космонавтики, который сложно переоценить.

Юрий Кондратюк (Александр Шаргей, 1897 – 1942)


Книга Кондратюка «Завоевание межпланетных пространств» у многих любителей ракетной техники лежит на особой полке. Этот труд стал настолько значимым в классической ракетотехнике, что надолго определил научной методы этой сферы. Расчеты Кондратюка использовались NASA в лунной программе «Аполлон».

Американский астронавт Нил Армстронг, первый человек на Луне, специально побывал в Новосибирске, чтобы набрать пригоршню земли у дома, в котором жил Кондратюк. «Эта земля для меня имеет не меньшую ценность, чем лунный грунт», — так впоследствии прокомментировал свои действия знаменитый астронавт. Его можно понять: если бы не гений Кондратюка, кто знает, возможно Армстронг не оставил бы первые следы на пыльной лунной поверхности.

В своей книге «Тем, кто будет читать, чтобы строить» 1919 года Кондратюк, независимо от Циолковского, оригинальным образом вывел основное уравнение движения ракеты, описал схемы четырехступенчатной ракеты на кислородно-водородном топливе, параболоидального сопла и многое другое. Он предлагал использовать сопротивление атмосферы для торможения ракеты при спуске ради экономии топлива. При полетах к другим планетам - выводить корабль на орбиту искусственного спутника, а для высадки человека и возвращения обратно применять небольшой взлетно-посадочный корабль. Именно это и реализовало американское космическое агентство NASA в ходе миссий «Аполлон».

Также авторству Кондратюка принадлежит идея использовать гравитационное поле встречных небесных тел для разгона или торможения, так называемый «пертурбационный маневр». Возможно, многие его расчеты еще найдут применение - когда мы будем вплотную рассекать по Солнечной системе. В любом случае, вклад этого советского ученого переоценить невозможно.

Константин Циолковский (1857 – 1935)


Многие слышали о Циолковском. Пожалуй, этот советский ученый-самоучка и вечный исследователь космоса, вместе с Королевом делит первое место по популярности и, конечно же, вкладу в развитие российской сферы освоения космоса. Кто, как не Циолковский, первым предложил заселить космическое пространство орбитальными станциями, придумал , поезда на воздушной подушке и всячески ратовал за развитие человечества? Именно Циолковский верил и знал, что однажды жизнь на одной из планет Вселенной станет настолько могущественной и развитой, что сможет победить извечную силу тяготения и распространиться по всей Вселенной. Разумеется, речь о Земле. Идеи Константина Эдуардовича Циолковского невероятно просто и красиво описал фантаст Александр Беляев в книге «Звезда «КЭЦ».

Сам «отец космонавтики» утверждал, что теорию ракетостроения разработал просто как приложение к своим философским изысканиям. А это, между прочим, более 400 работ, о которых мало что знает широкий читатель. Занимаясь изначально аэростатами и дирижаблями, в 1926–1929 годах Циолковский решил практический вопрос: сколько нужно топлива ракете, чтобы набрать скорость отрыва и оторваться от Земли? Много и плодотворно Циолковский работал над теорией полета реактивных самолетов, придумал свой газотурбинный двигатель, первым предложил «выдвигающиеся внизу корпуса» шасси, рассчитал оптимальную траекторию спуска космического аппарата по возвращению из космоса и многое-многое другое. Имя Циолковского и космонавтика - дополняющие друг друга вещи.

Михаил Тихонравов (1900 – 1974)


Первая советская ракета на жидком топливе, которая взлетела в воздух в 1933 году, была построена по конструкции Михаила Тихонравова. Его «перу» принадлежат также первые ракеты с высотой полета до 40 километров и многоступенчатые пороховые ракеты для полета в стратосферу. Вот кто воистину сделал «маленький шаг» от Земли, но гигантский скачок для всего человечества - и России, в частности.

Проекты Тихонравова имеют прямое отношение к запуску первого искусственного спутника Земли, к полету Юрия Гагарина на орбиту, к первому в истории выходу человека в открытый космос; они лежат в основе многих космических кораблей, которые «вышли» из конструкторского бюро Сергея Королева.

Сам Тихонравов долгое время изучал возможность построить надежный летательный аппарат, машущий крыльями, - махолет. С этой целью он каждое лето, отправляясь с друзьями на лодках в путешествия, ловил птиц, тщательно их измерял и вел интересную статистику. Работы Тихонравова, «винтика» в точнейшем механизме советского ракетостроения, дали толчок первым экскурсиям людей за пределы земной орбиты.

Николай Пилюгин (1908 – 1982)


По предложению Сергея Королева Пилюгин стал с 1946 года главным конструктором автономных систем управления в НИИ и членом легендарного Совета главных конструкторов, учрежденного Королевым. Однако широкой общественности Николай Алексеевич был известен не только и не столько своими оборонными разработками, которым посвятил большую часть своего рабочего времени, а как «штурман космических трасс»: при его непосредственном участии были созданы системы управления ракетами-носителями, а также первое и другие поколения космических аппаратов для мягкой посадки на Луну и Венеру, для облета планет, для спутников Марса и других.

Примечательно также и то, что по окончании Второй мировой войны коллектив под руководством Пилюгина с энтузиазмом продолжил разработку отечественной баллистической ракеты Р-1, в основе которой лежала немецкая Фау-2. Пришлось идти непроторенным путем, изготавливать и отлаживать новые элементы заново и впервые. Но Пилюгин с задачей справился, и ракеты Р-1 имели более высокие летно-технические характеристики и более высокую точность попаданий, чем даже Фау-2.

Общими усилиями советские деятели сферы освоения космоса не только проложили «дорогу в космос», с нуля написав все основные главы развития ракетостроения, но и сумели вывести Советский Союз в лидеры на фоне космической гонки. К сожалению, с окончанием космической гонки и распадом Советского Союза освоение космоса (не только в России, но и в других странах) на государственном уровне приобрело только номинальное значение.

Но что будет завтра? Появятся ли новые Циолковские, Королевы, Кондратюки и Цандеры, которые будут не просто руками - силой мысли выводить людей за пределы Солнечной системы и дальше? Ответить на этот вопрос придется вам, дорогие читатели.

Научный прорыв, позволивший осуществить полеты в космос, произошел в XX в.: была открыта теория относительности, создана квантовая механика, освоено управление ядерной энергией, достигнут прогресс в развитии авиационной техники. Большая часть этих открытий относится к физике. На рубеже XX и XXI вв., по мнению многих ученых, был совершен подобный прорыв в области астрономии. Не последнюю роль в «астрономической революции», на порядок увеличившей знания человечества о космосе, сыграли современные технические средства: телескопы, вынесенные за пределы орбиты Земли, научная аппаратура, установленная на межпланетных станциях.

Ресурсы и открытия, вызвавшие этот прорыв, далеко не исчерпаны, в ближайшем будущем ученые собираются продолжать исследования в самых разных областях. Прежде всего, физиков и астрономов волнуют глобальные проблемы: структура Вселенной, ее происхождение, протекающие в ней процессы. Чтобы разобраться в тайнах мироздания, ученые исследуют гамма– и рентгеновские лучи, приходящие из далеких галактик, изучают космические частицы, их состав, излучение и т. д. Полученные данные могут привести к новому прорыву в фундаментальной науке – в ядерной и квантовой физике, в теории относительности и единой теории поля.

К космическим программам, связанным с данной областью, относятся разнообразные астрофизические лаборатории, установленные на автоматических станциях, отправляемых в открытый космос. Они предназначены для изучения темной материи и энергии, космических лучей и антивещества.

Немаловажное значение имеет исследование Солнца как ближайшей к нам типичной звезды. Для наблюдения за светилом разрабатываются специальные космические комплексы, запускаемые на солнечную орбиту. Один из таких комплексов, «Коронас-Фотон», был запущен с российского космодрома в 2009 г., через год американцы запустили солнечную обсерваторию SDO. В планах – вывести космическую станцию на низкую орбиту для проведения исследований и экспериментов с максимально возможного близкого расстояния.

Понимание процессов, происходящих на Солнце, важно не только с точки зрения теории. Светило оказывает мощное влияние на земную жизнь, в том числе и на организм человека. Чем больше мы будем об этом знать, тем легче будет предотвратить отрицательные последствия этого влияния. Об использовании Луны как перевалочной базы и заселении Луны и Марса мечтал еще Циолковский. Ученый был уверен, что это произойдет в конце XX – начале XXI вв. К сожалению, материальные, научные и технические проблемы не позволили осуществить этот радужный прогноз. Тем не менее многие футурологи считают, что индустриальное освоение Солнечной системы и расселение человечества на другие планеты неизбежно. Правда, прогнозы по поводу того, когда именно это произойдет, сильно разнятся.

К размещению на Луне собственных баз в настоящее время готовятся несколько крупных держав: Россия, США, Китай, Япония, объединенная Европа. Автоматические станции и искусственные спутники, изучающие Луну, запускаются с определенной периодичностью. Посадочные модули с луноходами доставляют на Землю лунный грунт, над изучением которого работают исследовательские лаборатории.

Ученые надеются найти новые полезные ископаемые на Луне и думают над тем, как использовать уже обнаруженные.

После того как на Луне появятся полноценные космические базы, планируется осуществить пилотируемый полет на Марс. Россия, США и Европейское космическое агентство объявили это своей целью на XXI в. По существующим на сегодняшний день планам, это произойдет в 2030–2040-х гг.

Разработка космических кораблей для марсианской миссии велась в СССР с начала 1960-х гг., конструкторы предложили разные варианты, от модульного аппарата, собираемого на орбите, до тяжелой трехместной ракеты. Во всех случаях планировался вывод на околоземную орбиту, корректировка траектории, и только после этого – разгон при помощи электрореактивного двигателя и полет к Марсу.

В XXI в. планы несколько изменились. Теперь конструкторы собираются использовать новый тип двигателя – ядерную электродвигательную установку, в состав которой входит ядерный реактор и электрический ракетный двигатель. Над ним сейчас работают инженеры Росатома, проект должен быть завершен к 2018 г.

Один из американских проектов по освоению Марса предполагает отправку на красную планету космонавтов-добровольцев без возвращения на Землю. Они станут первыми жителями Марса и начнут его колонизацию. Полет на другую планету – чрезвычайно дорогостоящее мероприятие, а если не придется возвращать экспедицию, его стоимость сократится более чем в два раза. Для обеспечения жизнедеятельности у новых жителей Марса будет все необходимое, включая ядерный реактор и аппаратуру, созданную по новейшим технологиям. Каждые два года, когда Земля будет на минимальном удалении от Марса, колонистам будут переправлять новые запасы и новых желающих переселиться на красную планету.

Значимость планируемого полета на Марс трудно переоценить – то, что человек впервые ступит на поверхность другой планеты, а тем более сможет на ней существовать, продвинет цивилизацию на новый уровень. Многие ученые считают, что марсианская миссия станет стимулом для быстрого развития новых технологий, как это было с первым полетом в космос в прошлом веке. Колонизация Марса и, вслед за ним, других планет может решить многие проблемы человечества. В первую очередь, у нас появится убежище на случай глобальной катастрофы. Кроме того, на Марсе, его спутниках, ближайших планетах или астероидах могут быть полезные ископаемые и другие ресурсы, нужные землянам. Марс может стать полигоном для исследования удаленной части Солнечной системы и даже области за ее пределами. Сейчас все это кажется фантастикой: слишком большие затраты потребуются для отправки даже одной экспедиции. Но в будущем возможен прорыв в области космических технологий, который позволит удешевить полеты. К такому развитию событий нужно быть готовыми заранее, поэтому ученые уже сейчас разрабатывают планы и проекты по колонизации Марса и освоению всей Солнечной системы.

Параллельно космонавтике возникли и существуют такие науки, как космическая биология и медицина, изучающие влияние условий невесомости и других воздействий на живые организмы; космическая геофизика, исследующая Землю и происходящие на ней процессы из космоса. В физике и химии появились разделы, занимающиеся экспериментами с веществами и процессами за пределами земных условий. Каждая из этих наук вносит свой вклад в изучение космоса и получает от этих исследований импульс для собственного развития.

История частной космонавтики началась в 2004 г., когда свой первый полет совершил суборбитальный пилотируемый космический аппарат SpaceShipOne, построенный американской частной компанией. Раньше считалось, что осваивать космос могут только сверхдержавы, способные вкладывать в это огромные суммы, но в XXI в. ситуация меняется, появляются частные инвесторы, способные развивать перспективную отрасль.

Самым успешным частным производителем ракет на сегодняшний день считается SpaceX, компания из США, создавшая и запустившая несколько космических кораблей, в том числе грузовой Dragon, доставляющий грузы на МКС. В России тоже появляется частная космонавтика, созданы и функционируют несколько небольших компаний, занимающихся инновационными разработками в космической сфере. Одна из задач частной космонавтики – развитие космического туризма, создание специальной туристической орбитальной станции, космических отелей и кораблей, на которых непрофессиональные космонавты могли бы отправиться в полет.

Часть III. Космос как часть нашей жизни

Истории и интересные факты о космосе и его освоении

Взлететь на воздух

Первые ракеты, предназначенные не для космических путешествий, а для развлечений и запугивания врага, появились в Китае, ведь именно там был изобретен порох. В Поднебесной существовали огромные залежи селитры – одного из основных компонентов пороха, поэтому запуск ракет и фейерверков получил широкое распространение. На крупные праздники китайцы шумели, отпугивая злых духов.

Глядя на то, как ракета, начиненная порохом, резво взмывает ввысь, некоторые любознательные граждане начали задумываться о том, что можно заставить взлететь не только маленький предмет, но и что-нибудь покрупнее. Китайский изобретатель-самоучка Ван Гу, живший на рубеже XIV и XV вв., подошел к вопросу радикально: он решил сам при помощи пороха подняться в воздух.

Летательный аппарат Ван Гу представлял собой два соединенных воздушных змея гигантских размеров, между которыми было укреплено сиденье. Снизу к змеям было прикреплено около 50 ракет, заряженных порохом. Они и должны были стать движущей силой. К сожалению, эксперимент закончился трагически. Вместо того чтобы взлететь, Ван Гу взорвался вместе с ракетами. Имя мужественного изобретателя увековечено в названии одного из кратеров на Луне.

Таинственный изобретатель

В начале 1960-х гг. американцы дали старт программе «Аполлон», занимавшейся организацией пилотируемых полетов на Луну. Полет осуществлялся по следующей схеме: на орбиту спутника Земли выходил основной космический корабль, а на поверхность Луны опускался лишь небольшой лунный модуль. Затем астронавты возвращались на лунном модуле на корабль и летели на нем обратно на Землю. Такой способ был гораздо проще и дешевле, чем прямой полет одного корабля на Луну.

Американские конструкторы, разрабатывавшие траекторию полета, позже признались журналистам, что на подобную идею их натолкнула старая брошюра начала XX в., автором которой был некий Юрий Кондратюк, русский механик-самоучка. После этого заявления личностью Кондратюка заинтересовались советские специалисты.

Проведенное исследование выявило удивительные факты о судьбе талантливого изобретателя. Оказалось, что он всю жизнь прожил под чужим именем. Александр Шаргей, студент Петроградского политехнического института, увлеченный космосом, был призван в царскую армию, после революции воевал с белыми, потом дезертировал и оказался между двух огней: он был чужим и для белых, и для красных. Спастись ему помог паспорт погибшего Юрия Кондратюка.

Под этой фамилией изобретатель прожил всю жизнь. Он уехал в Сибирь, строил элеваторы и ветроэлектростанции и старался «не высовываться». Хотя по-прежнему интересовался проблемами космических полетов. Он опубликовал несколько статей и брошюр, в том числе и ту, где описывалась схема полета на Луну и другие объекты Солнечной системы. Его оригинальные новаторские идеи были замечены космическими конструкторами, сам Королев приглашал его на работу, но Кондратюк отказался. Он понимал, что в секретном учреждении обязательно проверят его прошлое, и тогда его будет ждать не работа, а тюрьма.

Четвероногие космонавты

Все знают о Белке и Стрелке, героических собаках, которые первыми из живых существ совершили полет вокруг Земли и благополучно вернулись на Землю. Имена десятков их коллег, вернувшихся и не вернувшихся с заданий, менее известны, хотя каждая из этих собак внесла свой огромный вклад в дело освоения космоса.

Советские конструкторы предпочитали иметь дело с собаками, в то время как их заокеанские коллеги из NASA отправляли в суборбитальные полеты и на орбиту Земли обезьян. Самым знаменитым приматом-космонавтом стал шимпанзе Хэм, он первым из представителей своего племени принял участие в суборбитальном полете, который закончился удачно.

Французы проявили оригинальность и запустили в космос кошку. Поначалу планировалось, что покорять бескрайние выси на ракете отправится кот по имени Феликс, но в последний момент он умудрился сбежать. Пришлось заменять его дублершей Фелиссетой. Запуск и приземление прошли удачно, астрокошка вернулась на Землю в капсуле, спускаемой при помощи парашюта.

Первыми животными, облетевшими вокруг Луны, стали черепахи. Они отправились в свое космическое путешествие в сентябре 1968 г., провели в полете 7 дней и в спускаемом аппарате приводнились в Индийском океане. В экспедиции по спасению черепах участвовал советский исследовательский корабль «Василий Головин». Черепах подняли на борт, обследовали, накормили, а по возвращении в порт они самолетом отправились в Москву.

Кроме перечисленных, в космосе побывали сотни других представителей флоры, в том числе хомяки, кролики, морские свинки, улитки, пауки, тритоны, рыбы и т. д.

«Мы бы и в майках полетели»

Советская космическая программа разворачивалась в условиях жесточайшей гонки, на пятки наступали американцы, нужно было постоянно выдавать «на-гора» что-то новое. После того как в космос слетали несколько одиночных космонавтов, NASA объявила о скором запуске первого многоместного корабля. Руководство СССР призвало главного конструктора Сергея Королева опередить конкурентов.

До окончания строительства первого многоместного «Союза» было еще далеко, но команда изобретательных ученых смогла найти выход из положения. Новый корабль «Восход», на котором планировался полет трех космонавтов, был создан на базе старого «Востока», подобного тому, на котором летал Гагарин. В нем были переделаны люки и основной вход, вместо одного массивного катапультируемого кресла установили три. Так как места было мало, космонавты в них могли поместиться только без скафандров. Оснащение корабля позволяло это осуществить, хотя, конечно, существовал риск внештатных ситуаций, где без скафандра можно было погибнуть.

Королев подошел к вопросам безопасности очень серьезно. По слухам, он сказал инженеру-разработчику Феоктистову: «Делай как для себя. Сам полетишь». И Феоктистов действительно стал одним из трех членов первого космического экипажа. В то время желающие отправиться в космос исчислялись тысячами, трудности и опасности энтузиастов не пугали. Через несколько лет после полета Константина Феоктистова спросили: «Не страшно было лететь без скафандра?» Он ответил: «Мы бы и в майках полетели».

История развития космонавтики


Чтобы оценить вклад того или иного человека в развитие какой-то области знаний, надо проследить историю развития этой области и попытаться усмотреть прямое или косвенное влияние идей и трудов этого человека на процесс достижения новых знаний и новых успехов. Рассмотрим историю развития ракетной техники и вытекающей из нее истории ракетно-космической техники.

Зарождение ракетной техники

Если говорить про саму идею реактивного движения и первую ракету, то эта идея, и ее воплощение родились в Китае примерно во 2 веке н.э. Движущей силой ракеты был порох. Китайцы сначала использовали это изобретение для развлечений - китайцы до сих пор являются лидерами в производстве фейерверков. А затем поставили эту идею на вооружение, в прямом смысле слова: такой "фейерверк" привязанный к стреле увеличивал дальность ее полета примерно на 100 метров (что было одной третью от всей длины полета), а при попадании цель зажигалась. Было и более грозное оружие на том же принципе - "копья яростного огня".

В таком примитивном виде реактивные ракеты просуществовали до 19 века. Только в конце 19-го века стали предприниматься попытки математически объяснить реактивное движение и создать серьезное вооружение. В России одним из первых этим вопросом занялся Николай Иванович Тихомиров в 1894 году 32 . Тихомиров предлагал использовать в качестве движущей силы реакцию газов, получающихся при сгорании взрывчатых веществ либо легко воспламеняющихся жидких горючих в сочетании с эжектируемой окружающей средой. Тихомиров стал заниматься этими вопросами позже Циолковского, но в смысле реализации продвинулся намного дальше, т.к. он мыслил более приземлено. В 1912 году он представил морскому министерству проект реактивного снаряда. В 1915 подал прошение о выдаче привилегии на новый тип "самодвижущихся мин" для воды и воздуха. Изобретение Тихомирова получило положительную оценку экспертной комиссии под председательством Н. Е. Жуковского. В 1921 по предложению Тихомирова в Москве была создана лаборатория для разработки его изобретений, получившая впоследствии (после перевода в Ленинград) наименование Газодинамической лаборатории (ГДЛ). Вскоре после основания деятельность ГДЛ сосредоточилась на создании ракетных снарядов на бездымном порохе.

Параллельно с Тихомировым над ракетами на твердом топливе трудился бывший полковник царской армии Иван Граве 33 . В 1926 году он получил патент на ракету, которая в качестве топлива использовала особый состав дымного пороха. Он стал пробивать свою идею, писал даже в ЦК ВКП(б), но эти хлопоты завершились вполне типично для того времени: полковник царской армии Граве был арестован и осужден. Но И.Граве еще сыграет свою роль в развитии ракетной техники в СССР, и примет участие в разработке ракет для знаменитой "Катюши".

В 1928 году была запущена ракета, топливом для нее служил порох Тихомирова. В 1930 году на имя Тихомирова выдан патент на рецептуру такого пороха и технологию изготовления шашек из него.

Американский гений

За рубежом проблемой реактивного движения одним из первых занялся американский ученый Роберт Хитчингс Годдард 34 . Годдард в 1907 году пишет статью "О возможности перемещения в межпланетном пространстве", которая по духу очень близка работе Циолковского "Исследование мировых пространств реактивными приборами", правда Годдард пока ограничивается только качественными оценками и никаких формул не выводит. Годдарду тогда было 25 лет. В 1914 году Годдард получает патенты США на конструкцию составной ракеты с коническими соплами и ракеты с непрерывным горением в двух вариантах: с последовательной подачей в камеру сгорания пороховых зарядов и с насосной подачей двухкомпонентного жидкого топлива. С 1917 года Годдард ведет конструкторские разработки в области твёрдотопливных ракет различного типа, в том числе, многозарядной ракеты импульсного горения. С 1921 Годдард переходит к экспериментам с жидкостными ракетными двигателями (окислитель - жидкий кислород, горючее - различные углеводороды). Именно эти ракеты на жидком топливе стали первыми прародителями космических ракет-носителей. В своих теоретических работах он не раз отмечал преимущества жидкостных ракетных двигателей. 16 марта 1926 года Годдард проводит успешный запуск простейшей ракеты с вытеснительной подачей (топливо - бензин, окислитель - жидкий кислород). Стартовый вес - 4.2 кг, достигнутая высота - 12.5 м, дальность полёта - 56 м. Годдарду принадлежит первенство в запуске ракеты на жидком топливе.

Роберт Годдард был человеком трудного, сложного характера. Он предпочитал работать скрытно, в узком кругу доверенных людей, слепо ему подчинявшихся. По словам одного из его американских коллег, "Годдард считал ракеты своим частным заповедником, и тех, кто так же работал над этим вопросом, рассматривал как браконьеров… Такое его отношение привело к тому, что он отказался от научной традиции сообщать о своих результатах через научные журналы... " 35 . Можно добавить: и не только через научные журналы. Весьма характерен ответ Годдарда от 16 августа 1924 года советским энтузиастам исследования проблемы межпланетных полетов, которые искренне желали, установить научные связи с американскими коллегами. Ответ совсем короткий, но в нем весь характер Годдарда:

"Университет Кларка, Уорчестер, Массачузетс, отделение физики. Господину Лейтейзену, секретарю общества по исследованию межпланетных связей. Москва, Россия.

Уважаемый сэр! Я рад узнать, что в России создано общество по исследованию межпланетных связей, и я буду рад сотрудничать в этой работе в. пределах возможного. Однако печатный материал, касающийся проводимой сейчас работы или экспериментальных полетов, отсутствует. Благодарю за ознакомление меня с материалами. Искренне ваш, директор физической лаборатории Р.Х. Годдард " 36 .

Интересным выглядит отношение Циолковского к сотрудничеству с зарубежными учеными. Приведем отрывок из его письма к советской молодежи, опубликованного в "Комсомольской правде" в 1934 г.:

"В 1932 году крупнейшее капиталистическое Общество металлических дирижаблей прислало мне письмо. Просили дать подробные сведения о моих металлических дирижаблях. Я не ответил на заданные вопросы. Я считаю свои знания достоянием СССР " 37 .

Таким образом, можно сделать вывод, что ни с той, ни с другой стороны не было никакого желания сотрудничать. Ученые очень ревностно относились к своей работе.

Споры о приоритете

Теоретики и практики ракетной техники в то время были совершенно разобщены. Это были те самые "... не связанные друг с другом исследования и опыты многих отдельных ученых, атакующих неизвестную область вразброд, подобно орде кочевых всадников", о которых, применительно, правда, к электричеству, писал Ф. Энгельс в "Диалектике природы". Роберт Годдард очень долгое время ничего не знал о трудах Циолковского, равно как и Герман Оберт, работавший с жидкостными ракетными двигателями и ракетами в Германии. Столь же одинок был во Франции один из пионеров космонавтики, инженер и летчик Робер Эсно-Пельтри, будущий автор двухтомного труда «Астронавтика».

Разделенные пространствами и границами, не скоро узнают они друг о друге. 24 октября 1929 года Оберт раздобудет, наверное, единственную во всем городке Медиаше пишущую машинку с русским шрифтом и отправит в Калугу письмо Циолковскому. "Я, разумеется, самый последний, кто стал бы оспаривать Ваше первенство и Ваши заслуги по делу ракет, и я только сожалею, что не раньше 1925 г. услышал о Вас. Я был бы, наверное, в моих собственных работах сегодня гораздо дальше и обошелся бы без тех многих напрасных трудов, зная ваши превосходные работы ",- открыто и честно писал Оберт. А ведь нелегко написать так, когда тебе 35 лет и ты всегда считал себя первым. 38

В фундаментальном докладе, посвященном космонавтике, француз Эсно-Пельтри ни разу не упомянул Циолковского. Популяризатор науки писатель Я.И. Перельман, прочитав работу Эсно-Пельтри, написал Циолковскому в Калугу: "Есть ссылка на Лоренца, Годдарда, Оберта, Гомана, Валье,- но ссылок на вас я не заметил. Похоже, что автор с Вашими трудами не знаком. Обидно! " Через некоторое время газета «Юманите» довольно категорически напишет: "Циолковского по справедливости следует признать отцом научной астронавтики ". Получается как-то неловко. Эсно-Пельтри пытается все объяснить: "...я предпринял все усилия для того, чтобы получить их (работы Циолковского.- Я.Г.). Для меня оказалось невозможным получить хотя бы маленький документ до моих докладов 1912 года ". Улавливается некоторое раздражение, когда он пишет, что в 1928 году получил "от профессора С. И. Чижевского заявление с требованием подтвердить приоритет Циолковского". "Мне думается, я полностью удовлетворил его ",- пишет Эсно-Пельтри. 39

Американец Годдард за всю жизнь ни в одной из своих книг, ни в статьях никогда не называл Циолковского, хотя получал его калужские книги. Впрочем, этот трудный человек вообще редко ссылался на чужие работы.

Нацистский гений

23 марта 1912 года в Германии родился Вернер фон Браун - будущий создатель ракеты ФАУ-2. Его ракетная карьера началась с чтения научно-популярной литературы и наблюдения за небом. Позже он вспоминал: "Это была цель, которой можно было посвятить всю жизнь! Не только наблюдать планеты в телескоп, но и самому прорваться во Вселенную, исследовать таинственные миры " 40 . Серьезный не по годам мальчик зачитывался книгой Оберта о полетах в космос, несколько раз смотрел фильм Фрица Ланга "Девушка на Луне", а в 15 лет вступил в общество космических путешествий, где познакомился с настоящими специалистами-ракетчиками.

Семья Браунов была помешана на войне. Среди мужчин дома фон Браунов только и шли разговоры, что об оружии и войне. Эта семья, по-видимому, была не лишена того комплекса, который был присущ многим немцам после поражения в Первой Мировой войне. В 1933 году в Германии к власти пришли нацисты. Барон и истинный ариец Вернер фон Браун со своими идеями реактивных ракет пришелся ко двору новому руководству страны. Он вступил в СС, и стал быстро подниматься по карьерной лестнице. На его исследования власти выделяли огромные деньги. Страна готовилась к войне, и фюреру было очень нужно новое оружие. О полетах в космос Вернеру фон Брауну приходится забыть на долгие годы. 41


ПЛАН

Введение


Заключение
Список используемых источников

Введение

    Герои и смельчаки проложат
    первые воздушные тропы трасс:
    Земля - орбита Луны, Земля - орбита Марса
    и еще далее: Москва - Луна, Калуга - Марс
    Циолковский К. Э.
53 года назад началась космическая эра человечества. 4 октября 1957 года в СССР был запущен первый искусственный спутник Земли.
Официально «Спутник-1» Советский Союз запускал в соответствии с принятыми на себя обязательствами по Международному геофизическому году. Спутник излучал радиоволны на двух частотах, это позволяло изучать верхние слои ионосферы. Вместе с тем это событие имело гораздо большее политическое значение. Полет увидел весь мир, и это шло вразрез с американской пропагандой о сильной технической отсталости Советского Союза. По престижу США был нанесен большой удар.
На встрече с молодыми учеными и.о. вице-премьера Сергей Иванов отметил, что не исключает возможности, что в России может появиться еще один национальный проект – космонавтика.
За 50 лет пройден огромный путь. Сотни тысяч людей внесли очень достойный вклад в развитие мировой космонавтики. Жаль, что долгое время это была закрытая секретная тема и шло параллельное развитие. Зачастую приходилось изобретать велосипед по обе стороны океана. Сейчас космическая область становится областью международного сотрудничества. Конечно, российские ученые, техники и космонавты будут продолжать вносить очень важный вклад в развитие космоса.

1. Современное состояние Российской космонавтики

Наши космодромы Капустин Яр, Байконур, Плесецк в сумме по количеству пусков вывели Россию на первое место в мире в 2009 году. Надо отдать должное Космическим войскам, РВСН, Роскосмосу: они не только прикрывают страну, но и активно поддерживают российскую космонавтику. Несмотря на проблемы, российская космонавтика остается ведущей силой в отечественной экономике.
2009 год подтвердил, что российский оборонно-промышленный комплекс способен создавать самые современные технологически сложные системы. Этот комплекс был и остается реальной производственной базой для прогресса нашей космонавтики. Но при этом нужно признать, что все приоритетные достижения космонавтики в XXI веке пока базируются на открытиях и достижениях науки и техники ХХ века. Так, 20 января 2010 года председатель Правительства В.В. Путин поздравил ветеранов и работников ракетной отрасли с 50-летием принятия на вооружение первой стратегической межконтинентальной ракеты Р-7. Модификации этой ракеты под индексом «Союз» до сих пор остаются самыми надежными космическими носителями. Живут научные и конструкторские производственные предприятия, основанные Королевым, Челомеем, Глушко, Янгелем, Исаевым, Макеевым, Пилюгиным, Барминым, Рязанским, Козловым, Решетневым, Надирадзе, Конопатовым, Семихатовым... Современная научная база создавалась Келдышем, Петровым, Тюлиным, Мозжориным, Охоцимским. Однако надо признать, что за последние годы российская космонавтика катастрофически отстала от американской и европейской в части прямых фундаментальных научных исследований. У нас нет ни одного научного космического аппарата. Десять лет никак не долетим до Фобоса. «Коронас» то работает, то «чихает». В то же время российские олигархи создают роскошные яхты, каждая из которых по стоимости соизмерима с научным космическим аппаратом. Вот и получается, что у нас яхты, а у американцев - почти вся мировая космическая наука. США сделали крупнейшие открытия в области астрономии, астрофизики, вообще очень далеко продвинули знания человека о нашей Вселенной с помощью специальных научных космических аппаратов... Как сказал один из героев любимого космонавтами фильма: «За державу обидно».
У современной отечественной космонавтики возникли неведомые ранее проблемы. Например, наш легендарный носитель «Союз» лишился производства перекиси водорода на территории России - рабочего тела для турбонасосного агрегата. Покупаем за рубежом. 50 лет назад такое трудно было представить. Сейчас найти квалифицированного рабочего для работы на современных станках труднее, чем после войны, когда с фронта не вернулись миллионы.

Легендарное продвижение космонавтики, которое мы наблюдали в 60-70-е годы, очень серьезно замедлилось, и с тех пор у нас не было принципиально новых прорывов. По многим причинам. Если раньше это был политический вопрос, то сейчас такие проекты переходят в область коммерции. В отличие от американцев, мы не умели использовать в народном хозяйстве те технологии, которые были разработаны. И у нас образовался застой в 70-80-е годы в космонавтике, то есть мы, в принципе, ничего нового не придумали. У нас не было серьезных программ. Что касается тех разработок, которые остались, они, конечно, еще и сейчас как бы актуальны, но весь вопрос заключается в том, можем ли мы действительно сделать это нацпроектом, кто этим будет заниматься и какие цели мы будем ставить. Раньше это было: первыми в космос, первого человека, первые на Луну и так далее и тому подобное, а сейчас такой вот национальной идеи нет, а значит, мы будем буксовать. И область космоса стала не столь привлекательной, какой она была раньше. Всего в истекшем году в космос было выведено 80 космических аппаратов. Из них порядка 30 - с российских космодромов. Но наши носители в большинстве своем выводили в космос чужие полезные нагрузки, то есть это были коммерческие пуски. И это неудивительно: запуск иностранного спутника связи надежными российскими носителями «Союз» и «Протон» обходится в полтора раза дешевле, чем американскими.
Для серьезного развития космонавтики нашему государству необходимо оздоровление всей экономики страны. Для сохранения России в числе ведущих космических держав необходимы принципиально новые технологические и научные позиции.

2. Перспективы развития Российской космонавтики

Перспективы российской космонавтики XXI в. напрямую связаны с ведущими тенденциями и факторами развития мировой космонавтики, выполнением международных обязательств России в области освоения космоса, а также сохранением космического потенциала страны и его приоритетным развитием.
В рамках программы развития российской пилотируемой космонавтики на ближайшие 25 лет должны быть реализованы следующие фазы:

    промышленное освоение околоземного пространства на базе развития Российского сегмента МКС и его потребительских свойств,
    создание экономически эффективной транспортной космической системы "Клипер",
    реализация лунной программы, которая положит начало промышленного освоения Луны,
    осуществление пилотируемой исследовательской экспедиции на Марс.
Все эти фазы между собой связаны, так как каждая предыдущая закладывает технологическую основу для последующих.
Дальнейшее строительство Российского сегмента МКС должно обеспечить максимальную технико-экономическую эффективность его возможностей. Это надо делать, начиная с многоцелевого лабораторного модуля (МЛМ), который планируется запустить в конце 2008 года. С этой целью на модуле должно быть использовано современное оборудование систем служебного борта и обеспечена оптимизация компоновки с размещением на борту универсальных рабочих мест под научные и прикладные эксперименты. Это позволит получить в будущем существенный доход от услуг предоставляемых российским и, прежде всего, зарубежным пользователям по проведению экспериментов и исследований, что в свою очередь позволит обеспечить создание новых модулей на внебюджетной финансовой основе. Стыковаться МЛМ должен к российскому служебному модулю МКС, чтобы обеспечить эффективное техническое и экономическое развитие российского сегмента в будущем.
Такая схема организации работ по развитию Российского сегмента МКС должна придать ему статус полноценного промышленного объекта в космосе.
Создание экономически эффективной транспортной системы предусматривает две составляющие: модернизацию космических кораблей "Союз" и "Прогресс" в период до 2010 года, параллельную разработку и ввод в штатную эксплуатацию многоразовой транспортной космической системы "Клипер" до 2015 года.
Модернизация кораблей "Союз" и "Прогресс" связана с необходимостью перехода на современную элементную базу и дальнейшего совершенствования цифрового бортового комплекса управления. Это позволит провести летную квалификацию бортовых систем, которые будут использованы в проекте "Клипер".
Многоразовая космическая система "Клипер" должна интегрироваться в существующую наземную космическую инфраструктуру эксплуатируемой сегодня транспортной системы как технологически, опираясь на существующие производственные мощности по изготовлению кораблей "Союз" и "Прогресс", так и организационно, включая использование стартовых комплексов модернизированной ракеты "Союз 2-3" и перспективной ракеты "Ангара", существующего наземного комплекса управления, аэродромного посадочного комплекса орбитального корабля "Бурана" и инфраструктуры средств подготовки космонавтов.
В результате предусматривается построить флот многоразовых пилотируемых кораблей "Клипер" для полетов как на МКС, так и для реализации автономных задач с возможностью полетов как с космодрома Байконур, так и с Плесецка.

Именно проект "Клипер" должен в полной мере обеспечить окупаемость пилотируемой космонавтики.
Первый этап пилотируемой лунной программы эффективно осуществлять с использованием кораблей "Союз", серийных ракет-носителей и разгонных блоков типа ДМ. Российский сегмент МКС при этом должен использоваться как сборочная площадка для межорбитального космического комплекса перед его полетом к Луне. Экипаж космонавтов от Луны будет возвращаться непосредственно на Землю со второй космической скоростью. Такой подход позволит уже в ближайшее время реализовать высадку первых экспедиций на Луну и отработать в полной мере организационно-технические принципы полетов к Луне, что значительно снизит технические и экономические риски.
На втором этапе лунной программы должна быть создана постоянно действующая многоразовая лунная транспортная система. В ее составе: пилотируемые космические корабли, созданные на базе корабля "Клипер" и межорбитальные буксиры с жидкостными реактивными двигателями для организации перелетов пилотируемых кораблей между околоземной и окололунной орбитальными станциями, а также буксиры с электрореактивными двигательными установками и крупногабаритными солнечными батареями для "медленной" транспортировки больших грузов. На этом этапе должна быть создана постоянная лунная орбитальная станция как космический порт (по аналогии с околоземной орбитальной станцией) с базирующимся на ней многоразовым лунным взлетно-посадочным модулем, который обеспечивает транспортировку людей и грузов между ней и поверхностью Луны.
На следующем, третьем, этапе должна быть создана постоянная база на Луне с целью начала промышленного освоения поверхности Луны.
Пилотируемая экспедиция на Марс консолидирует технологии, созданные на предыдущих фазах, включая долговременные орбитальные модули, межорбитальные буксиры на электрореактивной тяге и корабли "Клипер". Сама экспедиция будет реализована в три этапа. Первый - это отработка марсианского экспедиционного комплекса (МЭК) на ближних расстояниях при полете к Луне, во время перехода его на окололунную орбиту и возврата на околоземную орбиту. Второй этап - полет МЭК на околомарсианскую орбиту с экипажем космонавтов, но без их высадки на поверхность планеты. На этом этапе должна быть осуществлена с борта МЭК посадка автоматов на поверхность Марса с целью более детального изучения планеты и отработки принципов возврата экипажа с поверхности планеты на МЭК. На третьем этапе может быть осуществлена высадка космонавтов на Марс.

Заключение

Космическая деятельность относится к категории высших государственных приоритетов России вне зависимости от социально-экономических реформ и преобразований и, безусловно, должна базироваться на государственной поддержке - политической, экономической, юридической. В основу ее организации должен быть положен программно-целевой подход, основанный на выделении приоритетных целей космической деятельности и разработке программы их достижения, определяющей главные цели и задачи космической деятельности Российской Федерации, порядок, сроки выполнения и объемы финансирования работ по созданию и производству космической техники в интересах социально-экономической сферы, науки, обороны и международного сотрудничества с учетом сложившихся на современном этапе условий ведения космической деятельности (в варианте среднесрочного плана на сегодня это Федеральная космическая программа).
и т.д.................



Вверх