Как испарении жидкости зависит от. Определение скорости испарения и относительной летучести

Количественно испарение характеризуется массой воды, которая испаряется в единицу времени с единицы поверхности. Эта величина называется скоростью испарения. В системе СИ она выражается в кг/(м 2. с), в СГС – в г/(см 2. с).

Скорость испарения увеличивается с повышением температуры испаряющей поверхности. В процессе испарения молекулы воды, которые переходят в пар, тратят часть своей энергии на преодоление сил сцепления и на работу расширения, связанную с увеличением объема жидкости, которая переходит в газообразное состояние. В результате средняя энергия молекул, которые остаются в жидкости, уменьшается, и жидкость охлаждается. Для продолжения процесса испарения необходимо дополнительное тепло, которое называется теплотой испарения. Теплота испарения уменьшается с увеличением температуры испаряющей поверхности.

Если испарение проходит с поверхности воды, то эта зависимость выражается формулой:

Q = Q 0 - 0,65 . t, (5.9)

где Q - теплота испарения, Дж/г;

t – температура поверхности, которая испаряет, 0 С;

Q 0 = 2500 Дж/кг.

Если испарение проходит из поверхности льда или снега, то:

Q = Q 0 - 0,36 . t, (5.10)

Для практических целей скорость испарения выражается высотой (в мм) слоя воды, которая испаряется за единицу времени. Слой воды, высотой 1мм, который испарится с площади 1 м 2 , отвечает ее массе в 1 кг.

Согласно закону Дальтона, скорость испарения W в кг/(м 2. с) прямо пропорциональная дефициту влажности, вычисленному по температуре испаряющей поверхности, и обратно пропорциональная атмосферному давлению:

где Е 1 - упругость насыщения, взятая по температуре испаряющей поверхности, гПа;

е - упругость пара в окружающем воздухе, гПа;

Р – атмосферное давление, гПа;

А – коэффициент пропорциональности, который зависит от скорости ветра.

Из закона Дальтона видно, что чем больше разность (Е 1- е), тем больше скорость испарения. Если поверхность, которая испаряет, теплее воздуха, то Е 1 большее, чем упругость насыщения Е при температуре воздуха. В таком случае испарение продолжается даже тогда, когда воздух насыщен водяным паром, то есть если е=Е (но Е

Наоборот, если испаряющая поверхность холоднее воздуха, то при довольно большой относительной влажности может оказаться, что Е 1

Зависимость скорости испарения от атмосферного давления обусловлена тем, что в неподвижном воздухе молекулярная диффузия усиливается с уменьшением внешнего давления: чем оно меньшее, тем легче молекулам оторваться от испаряющей поверхности. Однако атмосферное давление у поверхности земли колеблется в сравнительно небольших пределах. Поэтому, оно не может существенным образом изменять скорость испарения. Но его приходится учитывать, например, при сравнении скоростей испарения на разных высотах в горной местности.

Скорость испарения зависит от скорости ветра . С увеличением скорости ветра увеличивается турбулентная диффузия, от которой в значительной мере зависит скорость испарения. Чем интенсивнее турбулентное перемешивание, тем быстрее протекает перенос водяного пара в окружающую среду. Если воздух переносится с суши на водоем, то скорость испарения с водоема увеличивается, так как в воздухе, который натекает на сравнительно более сухую поверхность, дефицит влажности больше, чем он над водоемом. При переносе воздуха с водной поверхности на сушу скорость испарения постепенно уменьшается в результате уменьшения дефицита влажности в воздухе, который находится над водой. На скорость испарения с поверхностей морей и океанов влияет их соленость, так как упругость насыщения над раствором меньше, чем над пресной водой.

На испарение из поверхности грунта значительно влияют физические свойства, состояние деятельной поверхности, рельеф и др. факторы. Гладкая поверхность испаряет меньше, чем шероховатая, так как над ней слабее развито турбулентное перемешивание, чем над шероховатой поверхностью. Светлые почвы при прочих равных условиях испаряют меньше, чем темные, так как они меньше нагреваются. Рыхлые почвы с широкими капиллярами испаряют меньше, чем плотные почвы с узкими капиллярами. Объясняется это тем, что по узким капиллярам вода поднимается ближе к поверхности почвы, чем по широкой. Скорость испарения зависит от степени увлажнения почвы: чем суше почва, тем медленнее происходит испарение. На скорость испарения влияет рельеф местности. На возвышенностях, над которыми имеет место интенсивное турбулентное перемешивание, испарение происходит быстрее, чем в низинах, балках и долинах, где воздух менее подвижен.

На скорость испарения влияет растительный покров. Он значительно уменьшает испарение непосредственно с поверхности почвы. Однако сами растения испаряют много влаги, которые берут из почвы. Испарение влаги растениями является физико-биологическим процессом и называется транспирацией.

Полная отдача водяного пара с определенной поверхности с одинаковым растительным покровом называется эвапотранспирацией. Она включает испарение из поверхности земли и от растений.

Испаряемость – это испарение, максимально возможное в данной местности с определенной деятельной поверхности при достаточном количестве влаги при существующих здесь метеорологических условиях.

Происходящее со свободной поверхности жидкости.

Сублимацию, или возгонку, т.е. переход вещества из твердого состояния в газообразное, так-же называют испарением.

Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно — она превращается в пар. Испарение — это один из видов парообразования . Другой вид — это кипение.

Механизм испарения.

Как происходит испарение? Молекулы любой жидкости находятся в не-прерывном и беспорядочном движении, причем, чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную величину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией , достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое пов-торится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поглощение энергии при испарении.

Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшает-ся. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и темпера-тура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости про исходило без изменения ее температуры, жидкости необходимо сообщать энергию.

Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.

Скорость испарения жидкости.

В отличие от кипения , испарение происходит при любой темпе-ратуре, однако с повышением температуры жидкости скорость испарения возрастает. Чем выше температура жидкости, тем больше быстро движущихся молекул имеет достаточную кинетичес-кую энергию , чтобы преодолеть силы притяжения соседних частиц и вылететь за пределы жид-кости, и тем быстрее идет испарение.

Скорость испарения зависит от рода жидкости. Быстро испаряются летучие жидкости, у кото-рых силы межмолекулярного взаимодействия малы (например, эфир, спирт, бензин). Если кап-нуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жид-кость будет охлаждаться и отбирать у нее некоторое количество теплоты.

Скорость испарения жидкости зависит от площади ее свободной поверхности. Это объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь свободной поверхности жид-кости, тем большее количество молекул одновременно вылетает в воздух.

В открытом сосуде масса жидкости вследствие испарения постепенно уменьшается. Это свя-зано с тем, что большинство молекул пара рассеивается в воздухе, не возвращаясь в жидкость (в отличие от того, что происходит в закрытом сосуде). Но небольшая часть их возвращается в жидкость, замедляя тем самым испарение. Поэтому при ветре, который уносит молекулы пара, испарение жидкости происходит быстрее.

Применение испарения в технике.

Испарение играет важную роль в энергетике, холодильной технике, в процессах сушки, испарительного охлаждения. Например, в космической технике быстроиспаряющимися веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус аппарата в результате трения нагревается, и покрывающее его вещество начи-нает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от пере-грева.

Конденсация.

Конденсация (от лат. condensatio — уплотнение, сгущение) — переход вещества из газообраз-ного состояния (пара) в жидкое или твердое состояние.

Известно, что при наличии ветра жидкость испаряется быстрее. Почему? Дело в том, что од-новременно с испарением с поверхности жидкости идет и конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвраща-ется в нее. Ветер же выносит вылетевшие из жидкости молекулы и не дает им возвращаться.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией объясняется, например, образование облаков: молекулы водяного пара, поднима-ющиеся над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака . Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начи-нает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается. Количество теплоты, выделяющееся при конденсации единицы массы, равно теплоте испарения.

Нам всем с детства хорошо известен один серьёзный жизненный факт. Для того чтобы остудить горячий чай, необходимо налить его в холодное блюдце и продолжительно дуть над его поверхностью. Когда тебе шесть-семь лет, особо не задумываешься над законами физики, просто принимаешь их как данное или, выражаясь физически, принимаешь их за аксиому. Однако, постигая со временем науки, мы обнаруживаем интересные сходства аксиом и последовательных доказательств, плавно переводя наши детские предположения во взрослые теоремы. То же самое и с горячим чаем. Никто из нас и подумать не мог, что такой способ его охлаждения напрямую связан с испарением жидкости.

Физика процесса

Для того чтобы ответить на вопрос, от чего зависит скорость испарения жидкости, надо разобраться в самой физике процесса. Испарение - это процесс фазового перехода вещества из жидкого агрегатного состояния в газообразное. Испаряться может любое в том числе очень вязкое. С виду и не скажешь, что некая желеобразная жижа может терять часть своей массы за счет испарения, но при определённых условиях именно это и происходит. Твердое тело также может испаряться, только такой процесс называется сублимацией.

Как происходит

Начав разбираться, от чего зависит скорость испарения жидкости, следует отталкиваться от того, что это эндотермический процесс, то есть процесс, проходящий с поглощением теплоты. Теплота (теплота испарения) передаёт энергию молекулам вещества, увеличивая их скорость и повышая вероятность их отрыва, ослабляя при этом силы молекулярного сцепления. Отрываясь от основной массы вещества, самые быстрые молекулы вырываются за его границы, и вещество теряет свою массу. При этом вылетевшие молекулы жидкости мгновенно вскипают, осуществляя при отрыве процесс фазового перехода, и их выход идёт уже в газообразном состоянии.

Применение

Понимая, от каких причин зависит скорость испарения жидкости, можно грамотно регулировать технологические процессы, происходящие на их основе. Например, работу кондиционера, в теплообменнике-испарителе которого кипит хладагент, забирая теплоту из охлаждаемого помещения, или вскипание воды в трубах промышленного котла, теплота которой передается на нужды отопления и ГВС. Осознание того, от каких условий зависит скорость испарения жидкости, предоставляет возможность конструировать и производить современное и технологичное оборудование компактных размеров и с повышенным коэффициентом теплопередачи.

Температура

Жидкое агрегатное состояние крайне неустойчиво. При наших земных н. у. (понятие "нормальных условий", т.е. пригодных для жизни людей) оно периодически стремится перейти в твердую или газообразную фазу. Как это происходит? От чего зависит скорость испарения жидкости?

Первичный критерий - это, естественно, температура. Чем сильнее мы нагреваем жидкость, тем больше энергии мы подводим к молекулам вещества, тем больше молекулярных связей мы разрываем, тем быстрее идёт процесс фазового перехода. Апофеоз достигается при устойчивом пузырьковом кипении. Вода кипит при 100 ºС при атмосферном давлении. Поверхность кастрюли или, например, чайника, где она кипит, только на первый взгляд идеально гладкая. При многократном увеличении картинки мы увидим бесконечные острые пики, как в горах. Теплота точечно подводится к каждому из этих пиков, и из-за малой поверхности теплообмена вода моментально вскипает, образуя пузырёк воздуха, который поднимается к поверхности, где и схлопывается. Именно поэтому такое кипение называют пузырьковым. Скорость при этом максимальная.

Давление

Второй важный параметр, от чего зависит скорость испарения жидкости, - это давление. При снижении давления ниже атмосферного вода начинает закипать при меньших температурах. На этом принципе основана работа знаменитых скороварок - специальных кастрюль, откуда откачивался воздух, и вода кипела уже при 70-80 ºС. Повышение давления, наоборот, увеличивает температуру закипания. Это полезное свойство используется при подаче перегретой воды от ТЭЦ в ЦТП и ИТП, где для сохранения потенциала переносимой теплоты воду подогревают до температур 150-180 градусов, когда надо исключить возможность её вскипания в трубах.

Другие факторы

Интенсивный обдув поверхности жидкости с температурой выше, чем температура подаваемой воздушной струи, - это ещё один фактор, от чего зависит скорость испарения жидкости. Примеры этого можно взять из повседневной жизни. Обдув ветром глади озера или тот пример, с которого мы начали повествование: обдув горячего чая, налитого в блюдце. Он остывает за счет того, что, отрываясь от основной массы вещества, молекулы забирают часть энергии с собой, охлаждая его. Здесь можно увидеть еще и влияние площади поверхности. Блюдце шире, чем кружка, поэтому с её квадратуры потенциально может уйти большее количество массы воды.

На скорость испарения также влияет тип самой жидкости: какие-то жидкости испаряются быстрее, другие, наоборот, медленнее. Важное влияние на процесс испарения оказывает и состояние окружающего воздуха. При высоком абсолютном влагосодержании (сильно влажном воздухе, например, рядом с морем) процесс испарения пойдёт медленнее.

Процесс испарения летучих жидкостей описывается уравнением Лангмюра - Кнудсена:

где W - скорость испарения; m - масса испарившейся жидкости; τ - продолжительность испарения; s-поверхность испарения; P1 - давление пара жидкоcти; M - молекулярная масса; T - температура поверхности испарения; 0 < k < 1 - поправочный коэффициент.

За счет теплоты испарения поверхность жидкости охлаждается, что вносит погрешность в определение скорости испарения. Понижение температуры поверхности испарения зависит от летучести растворителя (рис. 21): чем выше летучесть растворителя, тем больше снижение температуры поверхности. При экспериментальных определениях летучести растворителей необходимо учитывать передачу теплоты из воздуха и от подложки. С учетом этого понижение температуры испаряющей поверхности можно выразить следующей формулой:

где h - коэффициент теплопередачи; k - теплопроводность; ΔHисп - теплота испарения; рi0 - давление насыщенного пара растворителя; Pi00 - давление пара растворителя над поверхностью; Cn - экспериментальный коэффициент, учитывающий теплопередачу от подложки; сn можно рассчитать на основании экспериментальных результатов; для ацетона Cn = 4,8.

Расчетные результаты имеют хорошую сходимость с экспериментальными. Так, при испарении воды при 25 0C ее поверхность охлаждается до 15,6 0C При этом давление пара снижается с 3,20 кПа(24 мм рт. ст.) до 1,73 кПа (13 мм рт. ст.).

Рис. 21. Понижение температуры поверхности при испарении растворителей: 1 - бутилацетат; 2- толуол; 3-изопропиловый спирт; 4-гексан; 5-ацетон.

Если окружающий воздух имеет влажность 50 %, что соответствует давлению водяного пара 1,60 кПа (12 мм рт. ст.), то движущая сила испарения, равная разности давлений пара, в случае отсутствия охлаждения поверхности при 25 °С составляла бы 3,20 - 1,60 =1,60 кПа (12 мм рт. ст.); когда же имеет место охлаждение поверхности, движущая сила существенно уменьшается: 1,73- 1,60 = 0,13 кПа (1 мм рт. ст.). Следовательно, и скорость испарения снижается в 12 раз.

При диффузии растворителя из слоя жидкости его молекулы должны диффундировать через: а) жидкую фазу к поверхности, б) поверхностный слой жидкости и в) ламинарный пограничный слой воздуха. После этого, попав в турбулентный слой обтекающего воздуха, пары растворителя уносятся. С точки зрения диффузии, испарение жидкости описывается уравнением Гарднера:

(13)

где а - константа; D - коэффициент диффузии молекул жидкости в воздух; P-атмосферное давление; х - эффективная толщина ламинарного воздушного слоя над поверхностью испарения.

Если уравнение Лангмюра - Кнудсена (11) справедливо только для испарения растворителя в вакууме, то уравнение Гарднера (13) можно применять в случае испарения на воздухе; однако оно также содержит константу, значение которой определяется условиями проведения эксперимента. Кроме входящих в уравнение Гарднера параметров на испарение существенное влияние оказывает также скорость воздуха над поверхностью испарения.

Эффективная толщина ламинарного слоя над поверхностью х зависит как от скорости воздуха, так и от формы сосуда, в котором проводится определение. Эти параметры, а также протяженность поверхности испарения, контактирующей с потоком воздуха, учитывает следующее уравнение:

(14)

где n-концентрация пара у поверхности; H - расстояние от поверхности испарения до стенки; l- длина поверхности испарения; V1 - линейная скорость воздуха; D - коэффициент диффузии молекул растворителя в воздух; ξ - аэродинамический коэффициент смещения (коэффициент захвата).

Формулы (11), (13) и (14) позволяют выражать абсолютную скорость испарения. Для технолого-лакокрасочников чаще всего достаточно иметь относительные величины для сравнения летучести растворителей. Относительную летучесть Wотн определяют по продолжительности испарения определенного количества растворителя в сравнении с эталонным растворителем, например диэтиловым эфиром, бутилацетатом (БА) или ксилолом:

(15)

где τВА90% - время испарения 90 % бутилацетата; τ90% - время испарения 90 % данного растворителя.

Для определения относительной летучести растворителей разработаны различные методы и их модификации. В основе этих методов лежит определение кинетики испарения растворителей из тонких пленок, поскольку процесс испарения из больших масс растворителей не дает представления о характере улетучивания растворителя из лакокрасочных покрытий.

Для исследования кинетики испарения небольшие количества растворителя наносят на различные подложки как пористые (ватман, фильтровальная бумага), так и гладкие (стекло, алюминий). Чтобы подложка во время опыта смачивалась равномерно, поверхность, например, алюминиевых дисков обрабатывают раствором щелочи. Другая трудность состоит в исключении неравномерности слоя из-за капиллярного эффекта. В зависимости от формы и размера диска, на который наносят растворитель, жидкость может либо подниматься по его бортикам, либо собираться в середине диска.

VI районная научно-практическая конференция

школьников Яшкинского района «Открытия юных исследователей»

Секция: технология

Факторы, влияющие на скорость испарения жидкости.

ученица 5 класс

МБОУ «СОШ №2Яшкинского

муниципального района»

05.02.2004г. рождения

адрес:652010, пгт. Яшкино, ул. Пограничная,18

научный руководитель:

Локк Наталья Викторовна,

учитель технологии

МБОУ «СОШ №2Яшкинского

муниципального района»

адрес: 652010, пгт. Яшкино, ул.Мирная,12

Яшкинский район 2015

Оглавление

Введение …………………………………………………………………… 3

Глава I . Испарение ……………………………………………………..… ... 3

    1. Что такое испарение?...……………………………………………….. 3

      Механизм процесса испарения ………………………………………..3

      Факторы, влияющие на скорость испарения жидкости….…………..4

1.4Роль испарения в природе и в жизни человека ……………..………..4

Глава II . Результаты проведенного исследования ………………....… 5

2.1 Анализ анкетирования………………………………….. ……………..5

2.2 Результаты проведенных опытов ……………………………………..6

Глава III .Заключение ……………………………………………………...10

Литература ………………………………………………………………….12

Введение

Процесс испарения – это очень интересное физико-химическое явление, его интересно наблюдать и оно часто встречается в нашей жизни.Все знают, что если развесить выстиранное белье, то оно высохнет. И так же очевидно, что мокрый тротуар после дождя обязательно станет сухим. Мы часто сушим волосы феном и при этом они высыхают намного быстрее, чем без применения фена, кипение жидкости когда мы варим суп? В связи с этим возникают вопросы. Как именно и почему это происходит? От каких факторов зависит?

Цель исследования: исследовать зависимость скорости испарения воды от различных факторов среды.

Для достижения цели поставили следующие задачи:

    изучить литературу по данному вопросу, материалы Интернет-сайтов;

    установить опытным путем, какие факторы влияют на скорость испарения;

    выяснить, какова роль испарения в природе и в жизни человека;

    исследовать и проанализировать, что знают об испарении ученики нашего класса;

Объект исследования: испарение жидкости (воды)

Предмет исследования: факторы, влияющие на скорость испарения жидкости.

Гипотеза: скорость испарения зависит от рода вещества, площади поверхности жидкости и температуры воздуха, объема жидкости, наличие перемещающихся воздушных потоков над ее поверхностью.

Методы исследования :

    Поиск необходимой информации в литературных источниках и сети Интернет.

    Анализ и обработка информации.

    Анкетирование, анализ и обобщение результатов анкетирования.

    Опыты.

Глава I . Испарение

1.1 Что такое испарение?

Испарение – это процесс перехода вещества из жидкого состояния в газообразное. Обычно под испарением понимают переход жидкости в пар, происходящий со свободной поверхности жидкости. Испарение происходит с поверхности воды, почвы, растительности, льда, снега и т.д. за счет энергии, получаемой Землей от Солнца.

1.2Механизмпроцесса испарения

Процесс испарения состоит в том, что вода из жидкого или твердого состояния превращается в пар. Молекулы воды, находясь в непрерывном движении, преодолевают силу взаимного молекулярного притяжения и вылетают в воздух, находящийся над поверхностью воды.

Вылетевшие с поверхности воды молекулы образуют над ней пар. У оставшихся молекул воды при соударениях изменяются скорости, некоторые из молекул приобретают при этом скорость, достаточную для того, чтобы, оказавшись у поверхности, вылететь из жидкости. Этот процесс продолжается непрерывно, поэтому вода испаряется непрерывно. Таков механизм испарения.

1.3 Факторы, влияющие на скорость испарения жидкости

Существует несколько факторов, влияющих на скорость испарения жидкости.

1.Какая из луж, образовавшихся после дождя, высохнет быстрее: большая или маленькая? Скорость испарения жидкости зависит от объёма, поэтому меньшая лужа высохнет быстрее.

2. Где вода испарится быстрее: в круглой тарелке или в высоком кувшине? Скорость испарения жидкости зависит от площади ее поверхности: чем больше площадь поверхности, тем больше будет количество частиц, покидающих жидкость, и испарение будет происходить быстрее.

3.В какой день вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях, испаряется быстрее: солнечный или пасмурный? С увеличением температуры испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость и перейти в состояние, которое мы называем «газ».

4.Зачем жители полярных стран смазывают жиром лицо в сильный мороз? Скорость испарения зависит от рода жидкости, жир испаряется медленно, поэтому кожа лица не переохлаждается

5.Вы пьете чай, он очень горячий. Что вы сделаете, чтобы он остыл быстрее? Белье высыхает быстрее в какую погоду – в ветреную или тихую? Если воздух над жидкостью движется, то он сдувает, уносит молекулы, которые перешли из жидкости в газ, и вместе с тем освобождает пространство для следующих молекул. В этом случае процесс испарения ускоряется.

Таким образом, проанализировав литературу по теме, мы узнали, что скорость испарения зависит от ряда факторов.

1.4 Роль испарения в природе и в жизни человека

Главную роль в круговороте воды в природе играет испарение.Это непрерывный процесс. Испарение происходит с поверхности океана, суши и ее водоемов.

Испарение играет огромную роль в растительном, животном мире и в жизни человека. Оно предохраняет человека, животных и растения от перегрева.

Ни одно растение не может жить без воды. Она составляет от 70 до 95% сырой массы тела растения. Все процессы жизнедеятельности организма протекают с использованием воды: прорастание семян, рост и развитие взрослого растения, фотосинтез, образование плодов и семян. Важно, что при испарении поддерживается непрерывный ток воды по растению снизу вверх. Клетки листа, отдавшие воду, начинают активно её поглощать из сосудов жилок. Вместе с водой к клеткам поступают растворённые вещества. Следовательно, питание клетки прямо связано с испарением. При испарении организм растения охлаждается. Если процесс испарения нарушен, растение в потоках яркого солнечного света может пострадать от ожогов.

У растений засушливых мест, где воды в почве очень мало, а воздух горячий и сухой, имеются разнообразные приспособления, позволяющие уменьшить потерю влаги. У кактусов вместо листьев колючки; так как их поверхность небольшая, то испарение замедлено. У алоэ листья узкие, покрытые восковым налетом, предохраняющим от интенсивного испарения.

Для уравновешивания неизбежной потери воды за счет испарения многие животные всасывают ее через покровы тела в жидком или газообразном состоянии (амфибии, насекомые, клещи). В теплорегуляции птиц большую роль играют воздушные мешки. В жаркое время с поверхности воздушных мешков испаряется влага, что способствует охлаждению организма. В связи с этим в жаркую погоду птицы открывают клюв.

Организм человека, с помощью испарения охлаждается. Для терморегуляции организма важную роль играет потоотделение. Оно обеспечивает постоянство температуры тела человека или животного. За счет испарения пота уменьшается внутренняя энергия, благодаря этому организм охлаждается.

На производстве испарение применяется для сушки деталей. В технике испарение применяется как средство для очистки веществ или разделения жидких смесей перегонкой (получение бензина, керосина). Процесс испарения также лежит в основе двигателей внутреннего сгорания, холодильных установок, а также в основе всех процессов сушки в сушильных камерах.

Глава II . Результаты проведенного исследования

2.1 Анализ анкет

Чтобы выяснить, знают ли одноклассники что-нибудь о процессе испарения, я провела анкетирование среди ребят (Приложение 1, 2). В анкетировании приняло участие 20 одноклассников. В результате анкетирования выяснили:

    Знают, что такое процесс испарения - 80% (16уч-ся).

    Чаще всего наблюдали процесс испарения:

    на кухне, когда кипит чайник - 85 % (17уч-ся);

    над рекой - 15 % (3уч-ся);на улице после дождя -25% (5уч-ся);

    Считают, что процесс испарения влияет на жизнь человека -85% (17уч-ся);

2.2Результаты проведенных опытов.

Для исследования зависимости скорости испарения от различных факторов был проведен ряд опытов.

Опыт №1.

Проверка зависимости скорости испарения жидкости от её объема.

Оборудование: два одинаковых стакана, вода, мензурка.

Возьмем два одинаковых стакана и нальем в них воду в разных объемах. Поместим стаканы в одинаковые условия и будем наблюдать

Вывод: скорость испарения зависит от объёма жидкости (массы). При одинаковой температуре воды и внешних условиях в обоих стаканах вода испарилась с одинаковой скоростью. В том стакане, где объём воды был меньше, она испарилась раньше, чем в том, где объём был больше;

Опыт №2.

Проверка зависимости скорости испарения жидкости от величины её поверхности.

Оборудование: стакан, тарелка, вода, мензурка.

Для проведения опыта возьмём стакан и тарелку. Нальём в них воду одинаковой массы и температуры. Поместим в среду с одинаковыми условиями. Будем наблюдать.

Вывод : по результатам опыта видно, что скорость испарения зависит от величины её поверхности. Если в узкий и широкий сосуд налить одинаковый объём воды, то можно увидеть, что в широком сосуде вода испаряется быстрее. Следовательно, чем больше площадь поверхности, тем большее число молекул вылетает в воздух. Значит, скорость испарения зависит от площади поверхности жидкости.

Опыт № 3.

Проверка зависимости скорости испарения жидкости от температуры.

Оборудование: 2 одинаковых стакана, вода, мензурка.

Возьмем 2 одинаковых стакана и нальем в них воду одинаковой массы и температуры. Поставим 1 стакан с водой в теплое место, а другой в более прохладное место и будем наблюдать до тех пор, пока вода в одном из стаканов не испарится.

Стакан №1(мл)

Теплое место

Стакан №2 (мл)

Прохладное место

01.02.2015

17.00-17.10

02.02.2015

17.00-17.10

03.02.2015

17.00-17.10

04.02.2015

17.00-17.10

05.02.2015

17.00-17.10

06.02.2015

17.00-17.10

07.02.2015

17.00-17.10

08.02.2015

17.00-17.10

09.02.2015

17.10-17.10

10.02.2015

17.00-17.10

11.02.2015

17.00-17.10


Вывод: в результате проделанного опыта я выяснила, что вода испаряется быстрее в том сосуде, который находится в месте с более высокой температурой, потому что при нагревании скорость движения молекул увеличивается, молекулы сталкиваются и выбрасываются в воздух.

Опыт №4.

Проверка зависимости скорости испарения жидкости от рода жидкости.

Оборудование: три одинаковые тарелки, три салфетки, спирт, масло, вода, три пипетки.

В тарелки положила салфетки и на них капнула поочерёдно одинаковое количество воды, спирта и масла. Поставила в тёплом помещении и заметила, что спирт испарился через 3 минут, вода –через 12 минут и масло – через 2часа, остался след.

На 1 листе - вода

на 2 листе – масло

на 3 листе – спирт

Вывод: в результате проделанного опыта я выяснила, что разные жидкости испаряются по-разному, значит, скорость испарения жидкости зависит от рода жидкости.

Опыт №5.

Проверка зависимости скорости испарения жидкости от ветра.

Оборудование: две одинаковые салфетки, вода, фен.

Намочим две одинаковые салфетки водой. Одну оставим высыхать на воздухе, а на другую направим горячую струю воздуха с помощью фена. Через 3 минуты эта салфетка стала сухой, другая же оставалась влажной ещё14 минут.

Вывод: если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускорит этот процесс.

III . Заключение

В представленной работе я более подробно узнала, что такое испарение, как оно происходит, что скорость испарения жидкостей зависит от разных факторов:

1. Скорость испарения зависит от объёма жидкости (массы). При одинаковой температуре воды и внешних условиях в обоих стаканах вода испарилась с одинаковой скоростью. В том стакане, где объём воды был меньше, она испарилась раньше, чем в том, где объём был больше;

2. Скорость испарения зависит от величины её поверхности. Если в узкий и широкий сосуд налить по одинаковому объему воды, то можно увидеть, что в широком сосуде вода испаряется быстрее. Это объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь поверхности, тем большее число молекул вылетает в воздух. Значит, скорость испарения зависит от площади поверхности жидкости;

3. Вода испаряется быстрее в том сосуде, который находится в месте с более высокой температурой, потому что при нагревании скорость движения молекул увеличивается, молекулы сталкиваются и выбрасываются в воздух;

4. Разные жидкости испаряются по-разному, значит, скорость испарения жидкости зависит от рода жидкости;

5. Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускоряет этот процесс.

Моя гипотеза о зависимости скорости испарения жидкости от разных факторов подтвердилась.

Данная работа актуальна, так как люди активно используют процесс испарения в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс. Для этого необходимо любить природу и любить нашу Землю!

Литература

    Горев Л.А. Занимательные опыты и викторины по физике [Текст] /Л.А. Горев.- М.: ЭКСМО,2009

    Исаева О.Г. Я познаю мир [Текст] / О.Г. Исаева.- АСТ, Астрель, 2004

    МейяниА. Большая книга экспериментов для школьников [Текст] / А. Мейяни. - М.: ЗАО «РОСМЭН-ПРЕСС», 2006.

    Испарение [Электронный ресурс]:Викепидия.– Режим доступа: .- 10.12.2013

    Парообразование [Электронный ресурс]: Классная физика для любознательных.– Режим доступа: . – 15.12.2013



Вверх