Что значит "момент количества движения". Задачи на тему теорема об изменении количества движения и момента движения материальной точки

Хотя до сих пор. мы рассматривали только специальный случай твердого тела, свойства момента и его математическое выражение интересны даже тогда, когда тело не твердое. Можно доказать очень интересную теорему: подобно тому как внешняя сила равна скорости изменения величины р, которая называется полным импульсом системы частиц, так и момент силы равен скорости изменения некоторой величины L , называемой моментом количества движения, или угловым моментом группы частиц.
Чтобы доказать это, рассмотрим систему частиц, на которую действуют силы, и посмотрим, что произойдет с системой в результате действия вращающих моментов, созданных этими силами. Для начала давайте возьмем только одну частицу. Такая частица с массой m и осью О изображена на фиг. 18.3. Она не обязательно должна вращаться по окружности вокруг оси О, а может двигаться и по эллипсу, подобно планете вокруг Солнца, или по какой-нибудь другой кривой.

Главное то, что она движется, что на нее действует сила, которая ускоряет ее в соответствии с обычными законами: x -компонента силы равна массе, умноженной на х-компоненту ускорения, и т. д. Но посмотрим теперь, как действует момент силы. Он, как вы знаете, равен xF y - yF x , а х- и y -компоненты силы в свою очередь равны массе, умноженной соответственно на х- и y -компоненту ускорения, так что

Хотя сразу и не_видно, что это выражение является производной от какой-то простой величины, но на самом деле оно

равно производной от xm(dy/ dt)-ym(dx/ dt)\ Действительно,

Оказывается, таким образом, что момент силы равен скорости изменения со временем некоторой величины! Давайте обратим внимание на эту величину и прежде всего дадим ей имя. Она будет называться моментом количества движения, или угловым моментом, и обозначаться буквой L

Хотя во всех наших рассмотрениях мы не принимали в расчет теорию относительности, тем не менее второе выражение для L верно и при учете ее. Итак, мы нашли, что у обычного импульса также существует вращательный ана- лог - угловой момент, который связан с компонентами импульса точно так же, как и момент силы связан с компонентами силы! Так что если мы хотим вычислить момент количества движения относительно какой-то оси, то должны взять тангенциальную составляющую импульса и умножить ее на радиус. Другими словами, угловой момент показывает, насколько быстро движется частица вокруг какого-то центра, ведь он учитывает только тангенциальную часть импульса. Более того, чем дальше от центра удалена линия, по которой направлен импульс, тем больше будет угловой момент. Точно так же, поскольку геометрия в этом случае та же, что и в случае момента силы, существует плечо импульса (оно, разумеется, не совпадает с плечом силы, действующей на частицу), которое равно расстоянию линии импульса от оси. Таким образом, угловой момент равен просто величине импульса, умноженного на его плечо. Точно так же, как и для момента силы, для углового момента мы можем написать следующие три формулы:

Момент количества движения, как и момент силы, зависит от положения оси, относительно которой он вычисляется.
Прежде чем перейти к рассмотрению более чем одной частицы, применим полученные выше результаты к движению планеты вокруг Солнца. В каком направления действует сила? Конечно, по направлению к Солнцу. А какой при этом будет момент силы? Разумеется, все зависит от того, в каком месте мы выберем ось, однако результат получится совсем простым, если в качестве точки вращения выбрать само Солнце. Поскольку момент силы равен силе, умноженной на ее плечо, или компоненте силы, перпендикулярной к радиусу r , умноженной на r , то в этом случае нет никакой тангенциальной составляющей силы, а поэтому момент силы относительно оси, проходящей через Солнце, равен нулю. Следовательно, момент количества движения должен оставаться постоянным. Давайте-ка посмотрим, что это означает. Произведение тангенциальной компоненты скорости на массу и радиус, будучи моментом количества движения, должно оставаться постоянным, потому что скорость его изменения есть момент силы, который в нашем случае равен нулю. Это означает что остается постоянным произведение тангенциальной компоненты скорости на радиус, поскольку масса-то уж, конечно, не изменяется. Но такая величина, характеризующая движение планеты, уже вычислялась нами раньше. Предположим, что мы взяли маленький промежуток времени ∆ t. Какое расстояние пройдет планета при своем движении из точки Р в толку Q (фиг. 18.3)? Как велика площадь той области, которую «заметает» прямая, соединяющая планету с Солнцем? Пренебрегая площадью QQ’P, которая очень мала по сравнению с OPQ, находим, что площадь этой области равна половине основания PQ, умноженного на высоту OR. Другими словами, «заметенная» площадь равна половине произведения скорости на ее плечо. Так что скорость изменения этой площади пропорциональна моменту количества движения, который остается постоянным. Итак, мы получим, что закон Кеплера о равных площадях за равные промежутки времени является просто словесным описанием закона сохранения момента количества движения, когда моменты внешних сил отсутствуют.

момент количества движения

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, момент импульса, угловой момент) мера механического движения тела или системы тел относительно какого-либо центра (точки) или оси. Для вычисления момента количества движения К материальной точки (тела) справедливы те же формулы, что и для вычисления момента силы, если заменить в них вектор силы на вектор количества движения mv, в частности K0 = . Сумма моментов количества движения всех точек системы относительно центра (оси) называется главным моментом количества движения системы (кинетическим моментом) относительно этого центра (оси). При вращательном движении твердого тела главный момент количества движения относительно оси вращения z тела выражается произведением момента инерции Iz на угловую скорость? тела, т.е. КZ = Iz?.

Момент количества движения

кинетический момент, одна из мер механического движения материальной точки или системы. Особенно важную роль М. к. д. играет при изучении вращательного движения. Как и для момента силы, различают М. к. д. относительно центра (точки) и относительно оси.

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv. Т. о., ko = , где r ≈ радиус-вектор движущейся точки, проведённый из центра О, a kz равняется проекции вектора ko на ось z, проходящую через точку О. Изменение М. к. д. точки происходит под действием момента mo(F) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dko/dt = mo(F). Когда mо(F) = 0, что, например, имеет место для центральных сил, движение точки подчиняется площадей закону. Этот результат важен для небесной механики, теории движения искусственных спутников Земли, космических летательных аппаратов и др.

Главный М. к. д. (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. Ko = Skoi, Kz = Skzi. Вектор Ko может быть определён его проекциями Kx, Ky, Kz на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью w, Kx = ≈ Ixzw, Ky = ≈Iyzw, Kz = Izw, где lz ≈ осевой, а Ixz, lyz ≈ центробежные моменты инерции. Если ось z является главной осью инерции для начала координат О, то Ko = Izw.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента Moe. Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dKo/dt = Moe. Аналогичным уравнением связаны моменты Kz и Mze. Если Moe = 0 или Mze = 0, то соответственно Ko или Kz будут величинами постоянными, т. е. имеет место закон сохранения М. к. д. (см. Сохранения законы). Т. о., внутренние силы не могут изменить М. к. д. системы, но М. к. д. отдельных частей системы или угловые скорости под действием этих сил могут изменяться. Например, у вращающегося вокруг вертикальной оси z фигуриста (или балерины) величина Kz= Izw будет постоянной, т. к. практически Mze = 0. Но изменяя движением рук или ног значение момента инерции lz, он может изменять угловую скорость w. Др. примером выполнения закона сохранения М. к. д. служит появление реактивного момента у двигателя с вращающимся валом (ротором). Понятие о М. к. д. широко используется в динамике твёрдого тела, особенно в теории гироскопа.

Размерность М. к. д. ≈ L2MT-1, единицы измерения ≈ кг×м2/сек, г×см2/сек. М. к. д. обладают также электромагнитное, гравитационное и др. физические поля. Большинству элементарных частиц присущ собственный, внутренний М. к. д. ≈ спин . Большое значение М. к. д. имеет в квантовой механике.

Лит. см. при ст. Механика.

Количество движения (mV) - величина векторная, т.е. имеет определенное направление относительно выбранной точки отсчета (например, оси координат) или оси вращения. Основное уравнение динамики вращательного движения

можно также записать в виде

Здесь С/оо) имеет смысл аналога физической величины (mV) количества движения. Силовой момент М = Ph тогда с учетом (7.14)

Величину L можно рассматривать как момент количества движения (mV) относительно данной точки или оси. Она называется кинетическим моментом. Здесь h - кратчайшее расстояние от линии действия вектора mV по часовой стрелке. В общем случае

Знак «-» берется в случае вращения вектора mV по часовой стрелке.

Для пространственной системы момент количества движения материальной точки относительно оси, перпендикулярной к данной плоскости и проходящей через заданную точку 0, равен проекции момента количества движения. Например, для оси z: L z = L 0 cos а, где а - угол между данной плоскостью и радиус-вектором данной точки (расстояние от материальной точки до центра «0»).

Величина L относительно прямоугольных осей координат определяется проекциями скоростей на эти оси и координатами движущейся материаль-


Рис. 7.1.

ной точки. Например, в плоскости хОу (рис. 7.1) момент количества движения относительно оси z (перпендикулярной данной плоскости)

здесь L, и L 2 - моменты, создаваемые проекциями количества движения mV относительно точки 0.

По физическому смыслу производная - сумма моментов сил,

действующих на материальную точку, относительно выбранной оси координат. При JM i = 0, величина L = const, т.е. если момент равнодействующей силы равен нулю , то момент количества движения относительно выбранной оси остается постоянным.

Рис. 7.2.

Например, для точечного тела М с массой т величина L z = 0, если на тело действует сила Р, направленная к началу координат, так как моменты силы Р и силы тяжести mg (параллельной оси z, рис. 7.2) равны нулю. Здесь L z = mxV = const.

Если направление скорости V 0 все время перпендикулярно радиусу г, величина которого при перемещении точки М 2 уменьшается, то из равенства L z = const следует увеличение скорости точки М при приближении к точке О.

По аналогии с главным моментом сил можно вывести понятие: главный момент количества движения i 0 механической системы (или кинетический момент), относительно заданного центра, который равен геометрической сумме величин L 0j всех материальных точек данной системы относительно этого центра, т.е.

Кинетический момент механической системы относительно оси (например оси г) равен алгебраической сумме моментов количества движения всех точек данной системы: L 0 = X L iz .

Очевидно, что производная от кинетического момента по времени равна главному моменту внешних сил, действующих на данную механическую систему (относительно выбранного центра), т.е.

Отсюда следует закон сохранения кинетического момента механической системы относительно оси

т.е. кинетический момент в данном случае остается постоянным.

Изменения кинетического момента механической системы при ударе вытекает как следствие из рассмотрения вышеизложенных понятий об импульсе силы и моментах количества движения и определяется выражениями (7.17) и (7.18). Так, например, при ударе изменение кинетического момента системы относительно любой оси равно сумме моментов внешних импульсов сил относительно данной оси. Если к точкам механической системы приложены только внутренние силовые импульсы, то кинетический момент системы при ударе не изменяется.


Динамика:
Динамика материальной точки
§ 28. Теорема об изменении количества движения материальной точки. Теорема об изменении момента количества движения материальной точки

Задачи с решениями

28.1 Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути. При торможении развивается сила сопротивления, равная 0,1 веса поезда. В момент начала торможения скорость поезда равняется 20 м/с. Найти время торможения и тормозной путь.
РЕШЕНИЕ

28.2 По шероховатой наклонной плоскости, составляющей с горизонтом угол α=30°, спускается тяжелое тело без начальной скорости. Определить, в течение какого времени T тело пройдет путь длины l=39,2 м, если коэффициент трения f=0,2.
РЕШЕНИЕ

28.3 Поезд массы 4*10^5 кг входит на подъем i=tg α=0,006 (где α угол подъема) со скоростью 15 м/с. Коэффициент трения (коэффициент суммарного сопротивления) при движении поезда равен 0,005. Через 50 с после входа поезда на подъем его скорость падает до 12,5 м/с. Найти силу тяги тепловоза.
РЕШЕНИЕ

28.4 Гирька М привязана к концу нерастяжимой нити MOA, часть которой OA пропущена через вертикальную трубку; гирька движется вокруг оси трубки по окружности радиуса MC=R, делая 120 об/мин. Медленно втягивая нить OA в трубку, укорачивают наружную часть нити до длины OM1, при которой гирька описывает окружность радиусом R/2. Сколько оборотов в минуту делает гирька по этой окружности?
РЕШЕНИЕ

28.5 Для определения массы груженого железнодорожного состава между тепловозами и вагонами установили динамометр. Среднее показание динамометра за 2 мин оказалось 10^6 Н. За то же время состав набрал скорость 16 м/с (вначале состав стоял на месте). Найти массу состава, если коэффициент трения f=0,02.
РЕШЕНИЕ

28.6 Каков должен быть коэффициент трения f колес заторможенного автомобиля о дорогу, если при скорости езды v=20 м/с он останавливается через 6 с после начала торможения.
РЕШЕНИЕ

28.7 Пуля массы 20 г вылетает из ствола винтовки со скоростью v=650 м/с, пробегая канал ствола за время t=0,00095 c. Определить среднюю величину давления газов, выбрасывающих пулю, если площадь сечения канала σ=150 мм^2.
РЕШЕНИЕ

28.8 Точка M движется вокруг неподвижного центра под действием силы притяжения к этому центру. Найти скорость v2 в наиболее удаленной от центра точке траектории, если скорость точки в наиболее близком к нему положении v1=30 см/с, а r2 в пять раз больше r1.
РЕШЕНИЕ

28.9 Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение М. Дано: v0=500 м/с; α0=60°; v1=200 м/с; масса снаряда 100 кг.
РЕШЕНИЕ

28.10 Два астероида М1 и М2 описывают один и тот же эллипс, в фокусе которого S находится Солнце. Расстояние между ними настолько мало, что дугу М1М2 эллипса можно считать отрезком прямой. Известно, что длина дуги М1М2 равнялась a, когда середина ее находилась в перигелии P. Предполагая, что астероиды движутся с равными секториальными скоростями, определить длину дуги М1М2, когда середина ее будет проходить через афелий A, если известно, что SP=R1 и SA=R2.
РЕШЕНИЕ

28.11 Мальчик массы 40 кг стоит на полозьях спортивных саней, масса которых равна 20 кг, и делает каждую секунду толчок с импульсом 20 Н*с. Найти скорость, приобретаемую санями за 15 c, если коэффициент трения f=0,01.
РЕШЕНИЕ

28.12 Точка совершает равномерное движение по окружности со скоростью v=0,2 м/с, делая полный оборот за время T=4 c. Найти импульс S сил, действующих на точку, за время одного полупериода, если масса точки m=5 кг. Определить среднее значение силы F.
РЕШЕНИЕ

28.13 Два математических маятника, подвешенных на нитях длин l1 и l2 (l1>l2), совершают колебания одинаковой амплитуды. Оба маятника одновременно начали двигаться в одном направлении из своих крайних отклоненных положений. Найти условие, которому должны удовлетворять длины l1 и l2 для того, чтобы маятники по истечении некоторого промежутка времени одновременно вернулись в положение равновесия. Определить наименьший промежуток времени T.
РЕШЕНИЕ

28.14 Шарик массы m, привязанный к нерастяжимой нити, скользит по гладкой горизонтальной плоскости; другой конец нити втягивают с постоянной скоростью a в отверстие, сделанное на плоскости. Определить движение шарика и натяжение нити T, если известно, что в начальный момент нить расположена по прямой, расстояние между шариком и отверстием равно R, а проекция начальной скорости шарика на перпендикуляр к направлению нити равна v0.
РЕШЕНИЕ

28.15 Определить массу M Солнца, имея следующие данные: радиус Земли R=6,37*106 м, средняя плотность 5,5 т/м3, большая полуось земной орбиты a=1,49*10^11 м, время обращения Земли вокруг Солнца T=365,25 сут. Силу всемирного тяготения между двумя массами, равными 1 кг, на расстоянии 1 м считаем равной gR2/m Н, где m масса Земли; из законов Кеплера следует, что сила притяжения Земли Солнцем равна 4π2a3m/(T2r2), где r расстояние Земли от Солнца.
РЕШЕНИЕ

28.16 Точка массы m, подверженная действию центральной силы F, описывает лемнискату r2=a cos 2φ, где a величина постоянная, r расстояние точки от силового центра; в начальный момент r=r0, скорость точки равна v0 и составляет угол α с прямой, соединяющей точку с силовым центром. Определить величину силы F, зная, что она зависит только от расстояния r. По формуле Бине F =-(mc2/r2)(d2(1/r)/dφ2+1/r), где c удвоенная секторная скорость точки.
РЕШЕНИЕ

28.17 Точка M, масса которой m, движется около неподвижного центра O под влиянием силы F, исходящей из этого центра и зависящей только от расстояния MO=r. Зная, что скорость точки v=a/r, где a величина постоянная, найти величину силы F и траекторию точки.
РЕШЕНИЕ

28.18 Определить движение точки, масса которой 1 кг, под действием центральной силы притяжения, обратно пропорциональной кубу расстояния точки от центра притяжения, при следующих данных: на расстоянии 1 м сила равна 1 Н. В начальный момент расстояние точки от центра притяжения равно 2 м, скорость v0=0,5 м/с и составляет угол 45° с направлением прямой, проведенной из центра к точке.
РЕШЕНИЕ

28.19 Частица M массы 1 кг притягивается к неподвижному центру O силой, обратно пропорциональной пятой степени расстояния. Эта сила равна 8 Н на расстоянии 1 м. В начальный момент частица находится на расстоянии OM0=2 м и имеет скорость, перпендикулярную к OM0 и равную 0,5 м/с. Определить траекторию частицы.
РЕШЕНИЕ

28.20 Точка массы 0,2 кг, движущаяся под влиянием силы притяжения к неподвижному центру по закону тяготения Ньютона, описывает полный эллипс с полуосями 0,1 м и 0,08 м в течение 50 c. Определить наибольшую и наименьшую величины силы притяжения F при этом движении.
РЕШЕНИЕ

28.21 Математический маятник, каждый размах которого длится одну секунду, называется секундным маятником и применяется для отсчета времени. Найти длину l этого маятника, считая ускорение силы тяжести равным 981 см/с2. Какое время покажет этот маятник на Луне, где ускорение силы тяжести в 6 раз меньше земного? Какую длину l1 должен иметь секундный лунный маятник?
РЕШЕНИЕ

28.22 В некоторой точке Земли секундный маятник отсчитывает время правильно. Будучи перенесен в другое место, он отстает на T секунд в сутки. Определить ускорение силы тяжести в новом положении секундного маятника.

Момент количества движения материальной точки относительно некоторого центра О равен векторному произведению радиуса-вектора движущейся точки на количество движения , т. е.

Очевидно, что модуль момента количества движения равен

где - плечо вектора v относительно центра О (рис. 167).

Проектируя векторное равенство (153) на координатные оси, проходящие через центр О, получаем формулы для моментов количества движения материальной точки относительно этих осей:

В векторной форме теорема о моменте количества движения выражается так: производная по времени от момента количества движения материальной точки относительно какого-либо неподвижного центра О равна моменту действующей силы относительно того же центра, т. е.

Проектируя векторное равенство (156) на какую-либо из координатных осей, проходящих через центр О, получаем уравнение, выражающее ту же теорему в скалярной форме:

т. е. производная по времени от момента количества движения материальной точки относительно какой-либо неподвижной оси равна моменту действующей силы относительно той же оси.

Эта теорема имеет большое значение при решении задач в случае движения точки под действием центральной силы Центральной силой называется такая сила, линия действия которой все время проходит через одну и ту же точку, называемую центром этой силы. Если материальная точка движется под действием центральной силы F с центром в точке О, то

и, следовательно, . Таким образом, момент количества движения в данном случае остается постоянным по модулю и по направлению. Отсюда следует, что материальная точка под действием центральной силы описывает плоскую кривую, расположенную в плоскости, проходящей через центр силы.

Если известна траектория, которую описывает точка под действием центральной силы, то, пользуясь теоремой о моменте количества движения, можно найти эту силу как функцию расстояния от точки до центра силы.

Действительно, так как момент количества движения относительно центра силы остается постоянным, то, обозначая h плечо вектора относительно центра силы, имеем:

(158)

Для определения этой постоянной должна быть известна скорость точки в каком-либо месте траектории. С другой стороны, имеем (рис. 168):

где - радиус кривизны траектории, - угол между радиусом-вектором точки и касательной к траектории в этой точке.

Итак, имеем два уравнения (158) и (159) с двумя неизвестными v и F; остальные величины, входящие в эти уравнения, т. е. , являясь элементами заданной траектории, легко могут быть найдены. Таким образом, можно найти v и F как функции .

Пример 129. Точка М описывает эллипс под действием центральной силы F (рис. 169). Скорость в вершине А равна . Найти скорость в вершине В, если и .

Решение. Так как в данном случае

Пример 130. Точка М массы описывает окружность радиуса а, притягиваясь точкой А этой окружности (рис. 170).



Вверх