Зубчатая передача является. Зубчатые передачи. Общие сведения и классификация зубчатых передач. В результате изучения студент должен знать

Виды зубчатых передач

Виды зубчатых передач: а, б, в -- цилиндрические зубчатые передачи с внешним зацеплением; г -- передача винт-гайка; д -- цилиндрическая передача с внутренним зацеплением; е -- зубчатая винтовая передача; ж, з, и -- конические зубчатые передачи; к -- гипоидная передача

Зубчатые передачи и колеса классифицируют по следующим признакам

  • 1. По взаимному расположению геометрических осей валов различают передачи :
    • - с параллельными осями - цилиндрические (рис. 1 а-г);
    • - с пересекающимися осями - конические (рис. 1 д, е);
    • - со скрещивающимися осями - цилиндрические винтовые (рис. 1 ж);
    • - конические гипоидные и червячные (рис. 1 з);
    • - реечная передача (рис. 1 и).

Рисунок 1

  • 2. В зависимости от взаимного расположения зубчатых колёс :
    • - с внешним зацеплением (колёса передач вращаются в противоположных направлениях) (рис. 2 а);
    • - с внутренним зацеплением (направление вращения колёс совпадают) (рис. 2 б). Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.
    • -реечное зацепление (рис. 2 в);

Рисунок 2

  • 3. По расположению зубьев на поверхности колёс различают передачи :
    • - прямозубые; косозубые; шевронные; с круговым зубом (рис. 3).
  • 4. По форме профиля зуба различают передачи :
    • - эвольвентные;
    • - с зацеплением М. Л. Новикова;
    • - с эллиптическим профилем
    • -циклоидальное

Формы зубьев эвольвентного профиля

Формы зубьев эллиптического профиля (новая зубчатая передача Г.П.Гребенюка).

Формы зубьев в передачах с зацеплением М.Л. Новикова

  • 5. По конструктивному исполнению: передачи могут быть открытые (не защищены от влияния внешней среды) и закрытые (изолированные от внешней среды).
  • 6. В зависимости от числа ступеней: одно- и многоступенчатые.

Многоступенчатая.

7. В зависимости от относительного характера движения валов различают рядовые и планетарные.

Планетарная передача.

  • 8. По окружной скорости :
    • -тихоходные (до 3 м/с);
    • - для средних скоростей (3--15 м/с);
    • - быстроходные (св. 15 м/с);
  • 9. По точности зацепления.

Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации. Преимущественное распространение получили передачи с зубьями эвольвентного профиля. Достоинство эвольвентного зацепления состоит в том, что оно малочувствительно к колебанию межцентрового расстояния.

Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния.

Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

Конические передачи применяют только в тех случаях, когда это необходимо по условиям компоновки машины; винтовые -- лишь в специальных случаях.

3. Рассмотрим более подробно некоторые виды передач

Винтовая передача.

Винтовая передача (разновидность косозубой) состоит из двух косозубых цилиндрических колес. Однако в отличие от косозубых цилиндрических передач с параллельными валами касания между зубьями здесь происходит в точке и при значительных скоростях скольжения. Поэтому при значительных нагрузках винтовые зубчатые передачи работать удовлетворительно не могут.

Винтовая зубчатая передача

Коническая передача

Коническая передача состоит из двух конических зубчатых колес и служит для передачи вращающего момента между валами с пересекающимися осями под углом. Колеса конических передач выполняют с прямыми, косыми, круговыми зубьями.

  • а) -- колесо с прямыми зубьями;
  • Б) -- колесо с косыми зубьями;
  • В) -- колесо с круговыми зубьями

Гипоидная передача.

Передачу с коническими колесами для передачи вращающего момента между валами со скрещивающимися осями называют гипоидной. Эта передача находит применение в автомобилях.

Гипоиднаяя передача.

Червячные передачи

Червячная передача - это передача, которая состоит из винта, называемого червяком и червячного колеса. Червячная передача применяется для передачи вращения от одного вала к другому, когда оси валов перекрещиваются. Угол перекрещивания в большинстве случаев равен 90?. Червячная передача относится к зубчато - винтовым в отличии от косозубого колеса, обод червячного имеет вогнутую форму, это способствует облеганию червяка и соответственно длинны контактной линии, резьба червяка может быть однозаходной или многозаходной, а так же правой или левой.

Червячная передача

Червяки различают по следующим признакам: по форме поверхности, на которой образуется резьба, - цилиндрические и глобоидные; по форме профиля резьбы - архимедовы и эвольвентные цилиндрические червяки. Архимедов червяк имеет трапецеидальный профиль резьбы в осевом сечении, в торцевом сечении витки резьбы очерчены архимедовой спиралью.

Цилиндрический и глобоидный виды.

Эвольвентный червяк представляет собой косозубое зубчатое колесо с малым числом зубьев и большим углом их наклона. Профиль витка в торцевом сечении очерчен эвольвентой.

Наибольшее применение в машиностроении находят архимедовы червяки, так как технология их производства проста и наиболее отработана.

Профиль зубьев червячных колес в передачах эвольвентный. Поэтому зацепление в червячной передаче представляет собой эвольвентное зацепление зубчатого колеса с зубчатой рейкой.

Планетарная передача

Наиболее распространена зубчатая однорядная планетарная передача. Она состоит из центрального колеса 1 с наружными зубьями, неподвижного (центрального) колеса 2 с внутренними зубьями и водила на котором закреплены оси планетарных колес (или сателлитов).

Планетарная передача

Волновые зубчатые передачи.

Волновые передачи основаны на принципе передачи вращательного движения за счет бегущей волновой деформации одного из зубчатых колес.

Такая передача была запатентована американским инженером Массером в 1959 г.

Волновая зубчатая передача

Кинематически эти передачи представляют собой разновидность планетарной передачи с одним гибким зубчатым колесом. На рисунке изображены основные элементы волновой передачи: неподвижное колесо с внутренними зубьями, вращающееся упругое колесо с наружными зубьями и водило h. Неподвижное колесо закрепляется в корпусе и выполняется в виде обычного зубчатого колеса с внутренним зацеплением. Гибкое зубчатое колесо имеет форму стакана с легко деформирующейся тонкой стенкой: в утолщенной части (левой) нарезаются зубья, правая часть имеет форму вала. Водило, состоит из овального кулачка и специального подшипника.

При вращении водила овальной формы образуются две волны. Такую передачу называют двухволновой. Бывают трехволновые передачи, ниже показана схема такой передачи.

зубчатый передача эвольвентный винтовой

Волновые передачи обладают большой нагрузочной способностью (в зацеплении находится большое число пар -- зубьев) и высоким передаточным числом (< 300 для одной ступени) при сравнительно малых габаритах. Это основные достоинства этих передач. Передача может работать, находясь в герметизированном корпусе, что очень важно для использования волновых передач в химической, авиационной и других отраслях техники.

Недостатки волновой передачи: практически индивидуальное, дорогостоящее, весьма трудоемкое изготовление гибкого колеса и волнового генератора; возможность использования этих передач только при сравнительно невысокой угловой скорости вала генератора; ограниченные обороты ведущего вала (во избежание больших центробежных сил инерции некруглого генератора волн; мелкие модули зубьев 1,5-2 мм)

Зубчатые передачи с зацеплением Новикова.

Передачи с зацеплением Новикова состоят из двух цилиндрических косозубых колес или конических колес с винтовыми зубьями и служат для передачи момента между валами с параллельными или пересекающимися осями. Особенность зацепления Новикова состоит в том, что в этом зацеплении первоначальный линейный контакт заменен точечным, превращающимся под нагрузкой в контакт с хорошим прилеганием. Простейшими профилями зубьев, обеспечивающими такой контакт, являются профили, очерченные по дуге окружности или близкой к ней кривой

Профили зубьев в передачах с зацеплением М. Л. Новикова

В зацеплении Новикова контакт зубьев теоретически осуществляется в точке, в эвольвентном зацеплении соприкосновение зубьев происходит по линии. Однако при одинаковых габаритных размерах передачи соприкосновение зубьев в зацеплении Новикова значительно лучше, чем соприкосновение в эвольвентном зацеплении.

К сожалению, при этом приходится пожертвовать основным достоинством эвольвентных зацеплений - качением профилей зубьев друг по другу и соответственно получить высокое трение в зубьях. Однако для тихоходных машин это не так важно.

К достоинствам зацепления Новикова относятся возможность применения его во всех видах зубчатых передач: с параллельными, пересекающимися и скрещивающимися осями колес, с внешним и внутренним зацеплением, постоянным и переменным передаточным отношением. Потери на трение в этой системе зацепления примерно в 2 раза меньше потерь в эвольвентном зацеплении, что увеличивает КПД передачи.

К основным недостаткам передач с зацеплением Новикова относятся: технологическая трудоемкость изготовления колес, ширина колес должна быть не менее 6 модулей и др. В настоящее время передачи с зацеплением Новикова находят применение в редукторах больших размеров.

Подавляющее большинство механических передач имеет в своей основе зубчатые зацепления. Другими словами, в зубчатой передаче усилие передается благодаря зацеплению пары зубчатых колес (зубчатой пары). Зубчатые передачи активно используются, позволяя изменять скорость вращения, направление, моменты.

Основной задачей является преобразования вращательного движения, а также изменение расположения элементов и ряд других функций, которые необходимы для работы узлов, агрегатов и механизмов. Далее мы рассмотрим типы зубчатых передач, их особенности, а также достоинства зубчатых передач и их недостатки.

Читайте в этой статье

Как уже было сказано, зубчатые зацепления (передачи зацеплением) позволяют эффективно реализовать передачу вращательного движения, которое поступает от двигателя.

Параллельно осуществляется преобразование движения, изменяется частота вращения, величина , направление осей вращения и т.д. Чтобы выполнять такие задачи, существуют разные виды передач. Прежде всего, их принято классифицировать согласно особенностям расположения осей вращения.

  • Цилиндрическая передача. Такая передача состоит из пары, которая обычно имеет разное количество зубьев, а оси зубчатых колес цилиндрической передачи являются параллельными. Также отношение чисел зубьев принято называть передаточным отношением. Меньшее по размеру зубчатое колесо называется шестерней, тогда как большое называют зубчатым колесом.

    В том случае, когда шестерня ведущая, при этом передаточное число оказывается больше единицы, такая передача является понижающей, так как зубчатое колесо будет вращаться с меньшей частотой, чем шестерня. Также одновременно при условии уменьшения угловой скорости происходит увеличение крутящего момента на валу. В случае, когда передаточное число оказывается меньше единицы, такая передача буде повышающей.

  • Коническое зацепление. Особенностью является то, что оси зубчатых колес будут пересекаться, вращение передается между валами, расположенными под тем или иным углом. Передача будет понижающей или повышающей с учетом того, какое из колес оказывается ведущим в передаче данного типа.
  • Червячная передача. Такая передача отличается тем, что имеет оси вращения, которые скрещиваются. Большое передаточное число получается в результате соотношения числа зубьев колеса, а также числа заходов червяка. Сами червяки бывают однозаходными, двухзаходными или четырехзаходными. Также важной особенностью червячной передачи считается то, что в этом случае вращение передается исключительно от червяка на червячное колесо. При этом обратный процесс является нереализуемым по причине ильного трения. Данная система имеет способность самостоятельно затормаживаться благодаря применению червячных редукторов (например, в механизмах для подъема грузов).
  • Реечное зацепление, которое удается реализовать при помощи зубчатого колеса и рейки. Такое решение позволяет эффективно преобразовать вращательное движение в поступательное и обратно. Например, в автомобиле решение обычно используется в устройстве рулевого управления (рулевая рейка).
  • Винтовые передачи. Такие передачи используются в том случае, если валы скрещиваются. При этом контакт зубьев зацепления точечный, сами зубья сильно изнашиваются под нагрузками. Передачи данного типа зачастую используются в разных приборах.
  • Планетарная передача (). Данный тип зацепления отличается от остальных тем, что в нем использованы зубчатые колеса, имеющие подвижные оси. Как правило, присутствует жестко закрепленное наружное колесо, которое имеет внутреннюю резьбу.

    Еще имеется центральное колесо, а также водило с сателлитами. Указанные элементы перемещаются по окружности неподвижного колеса, благодаря чему они вращают центральное колесо. В этом случае происходит передача вращения от водила на центральное колесо или же обратно.

Зубчатые передачи могут иметь наружное или внутреннее зацепление. Если с наружным все понятно (в данном случае схема зубчатой передачи предполагает, что зубья расположены сверху), то при внутреннем зацеплении зубья большего колеса располагаются на внутренней поверхности. Также вращение возможно только в одном направлении.

Рассмотрев выше основные виды зацеплений (зубчатых передач), следует добавить, что при этом указанные типы могут использоваться в разных сочетаниях с учетом особенностей тех или иных кинематических схем.

  • Еще зубчатые передачи могут отличаться по форме зубьев, профилю и типу. С учетом отличий принято выделять следующие зацепления: эвольвентные, круговые и циклоидальные. При этом чаще всего используются именно эвольвентные зацепления, так как технологически данное решение превосходит другие аналоги.

Прежде всего, такие зубья нарезаются при помощи простого реечного инструмента. Указанное зацепление имеет постоянное передаточное отношение, которое никак не зависит от степени смещения межцентрового расстояния. Недостатком зацепления является только то, что во время передачи большой мощности сказывается небольшое пятно контакта в двух выпуклых поверхностях зубьев. Результат — разрушение поверхности и другие дефекты материала.

Еще добавим, что круговое зацепление отличается тем, что выпуклые зубья шестерни сцеплены с вогнутыми колесами. Это позволяет значительно увеличить пятно контакта, однако также сильно возрастает сила трения в указанных парах.

  • Также можно отдельно выделить сами виды зубчатых колес: прямозубые, косозубые, шевронные и криволинейные. Прямозубые являются наиболее распространенными типами пар, они просты в разработке, дешевы в изготовлении и надежны в рамках эксплуатации. Линия контакта в данном случае параллельна оси вала. Такие колеса отличаются дешевизной производства, однако способны передать сравнительно небольшой максимальный крутящий момент по сравнению с косозубыми и шевронными зубчатыми колесами.

Косозубые колеса оптимально применять в том случае, если частота вращения очень высокая. Данное решение позволяет добиться плавности и снижения шума. Минусом принято считать большую нагрузку на подшипники, так как возникают осевые усилия.

Шевронные колеса имеют ряд преимуществ, свойственных косозубым парам. Прежде всего, они не создают дополнительной нагрузки на подшипники осевыми усилиями (силы разнонаправлены).

Криволинейные колеса обычно используют в том случае, когда необходимы максимальные передаточные отношения. Такие колеса создают меньше шума при работе, а также более эффективно работают на изгиб.

Из чего изготавливаются зубчатые колеса и шестерни

Как правило, в основе зубчатого колеса лежит сталь. При этом шестерня должна иметь большую прочность, так как сами колеса могут иметь разные характеристики по прочности.

По этой причине шестерни изготавливаются из разных материалов, а также такие изделия проходят дополнительную термическую обработку и/или комплексную химическую и температурную обработку.

Например, шестерни, которые выполнены из легированной стали, также проходят процесс упрочнения поверхности, в рамках которого может быть использован метод, позволяющий добиться желаемых характеристик (азотирование, цементация или цианирование). Если для изготовления шестерни используется углеродистая сталь, такой материал проходит поверхностную закалку.

Что касается зубьев, для них предельно важна прочность поверхности, а также сердцевина должна быть мягкой и вязкой. Данные характеристики позволяют избежать излома и быстрого износа рабочей нагруженной поверхности. Еще добавим, что колесные пары механизмов, где нет больших нагрузок и высокой частоты вращения, изготавливают из чугуна. Также можно встретить в качестве материала для изготовления колесных пар бронзу, латунь и даже всевозможные виды пластика.

Сами зубчатые колеса выполняются из заготовки, полученной методом литья или штамповки. Затем применяется метод нарезки зубьев. Нарезка осуществляется путем использования методов копирования, обкатки. Метод обкатки дает возможность изготовить зубья разной конфигурации при помощи одного инструмента (долбяк, червячные фрезы, рейка).

Чтобы осуществить нарезку методом копирования, требуются пальцевые фрезы. После нарезки выполняется термическая обработка. Если же нужно зацепление высокой точности, после такой термообработки дополнительно выполняется шлифовка и обкатка.

Прежде всего, среди достоинств зубчатой передачи можно выделить:

Также выделяют и недостатки зубчатой передачи:

  • повышенные требования к качеству изготовления и точности установки;
  • при высокой скорости вращения возникает шум по причине возможных неточностей при изготовлении шага и профиля зубьев;
  • повышенная жесткость не позволяет эффективно компенсировать динамические нагрузки, в результате чего возникает разрушение и пробуксовки, появляются дефекты;

Напоследок отметим, что во время обслуживания механизм нужно осматривать, производя проверку состояния зубчатых колес, шестерен и зубьев на предмет повреждений, трещин, сколов и т.д.

Также проверяется само зацепление и его качество (часто используется краска, которая наносится на зубья). Нанесение краски позволяет изучить величину пятна контакта, а также расположение относительно высоты зуба. Для регулировки зацепления применяются прокладки, которые ставятся в подшипниковые узлы.

Подведем итоги

Как видно, зубчатая передача является достаточно распространенным решением, которое используется в различных узлах, агрегатах и механизмах. С учетом того, что существует несколько типов таких передач, перед использованием одного или другого вида, в рамках проектирования конструкторы учитывают кинематические и силовые характеристики работы разных механизмов и агрегатов.

С учетом ряда особенностей и нагрузок подбирается вид зубчатой передачи, ее габариты, определяется степень нагрузки. После этого выполняется подбор материалов для изготовления зубчатых пар, а также способы необходимой обработки и нарезки зубьев. При расчетах отдельно учитывается модуль зацепления, величины смещений, количество зубьев шестерни и колеса, расстояние между осями, ширина венцов и т.д.

При этом основными условиями, которые определяют срок службы зубчатой передачи и ее ресурс, принято считать общую износостойкость поверхностей зубьев, а также прочность зубьев на изгиб. Чтобы получить нужные характеристики, в рамках проектирования производства зубчатых механизмов указанным особенностям уделяется отдельное повышенное внимание.

Читайте также

Гипоидная передача в устройстве трансмиссии автомобиля: что такое гипоидная передача, в чем ее особенности и отличия, а также преимущества и недостатки.

  • Дифференциал коробки передач: что это такое, устройство дифференциала, виды дифференциалов. Как работает дифференциал КПП в трансмиссии автомобиля.
  • Модуль m и число зубьев z являются основными величинами, определяющими зубчатые зацепления. Значение модулей для всех передач - величина стандартизированная, выраженная, как видно из формулы m = d/z, в миллиметрах. Ниже преведены числовые величины стандартных модулей, применяемые при изготовлении зубчатых колес, по ГОСТ 9563-60 (СТ СЭВ 310-76):

    1-й ряд, мм.: 0,05; 0,06; 0,08; 0,1; 0,12; 0,15; 0,2; 0,25; 0,3; 0,4; 0,5; 0,6; 0,8; 1; 1,25; 1,5; 2; 2,5; 3; 4,5; 6; 8; 10; 12; 16; 20; 25; 32; 40; 50; 60; 80; 100.

    2-й ряд, мм.: 0,055; 0,07; 0,09; 0,11; 0,22; 0,28; 0,35; 0,45; 0,55; 0,7; 0,9; 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14; 18; 22; 28; 36; 45; 55; 70; 90.

    При назначении величин модулей первый ряд следует предпочитать второму.

    Зубчатые передачи. Общие сведения и классификация зубчатых передач

    Механизм, в котором два подвижных звена являются зубчатыми ко лесами, образующими с неподвижным звеном вращательную или поступатель ную пару, называют зубчатой передачей (рис. 1).

    Рис. 1. Виды зубчатых передач: а, б, в - цилиндрические зубчатые передачи с внешним зацеплением; г - реечная передача; д - цилиндрическая передача с внутренним зацеплением; е - зубчатая винтовая передача; ж, з, и - конические зубчатые передачи; к - ги поидная передача

    В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г).

    Зубчатые передачи - наиболее распространенный тип передач в современном машиностроении и приборостроении; их применяют в широких диапазонах скоростей (до 275 м/с), мощностей (до десятков тысяч киловатт).

    Основные достоинства зубчатых передач по сравнению с другими передачами:

    Технологичность, постоянство передаточного числа;

    Высокая нагрузочная способность;

    Высокий КПД (до 0,97-0,99 для одной пары колес);

    Малые габаритные размеры по сравнению с другими видами передач при равных условиях;

    Большая надежность в работе, простота обслуживания;

    Сравнительно малые нагрузки на валы и опоры.

    К недостаткам зубчатых передач следует отнести:

    Невозможность бесступенчатого изменения передаточного числа;

    Высокие требования к точности изготовления и монтажа;

    Шум при больших скоростях; плохие амортизирующие свойства;

    Громоздкость при больших расстояниях между осями ведущего и ведомого валов;

    Потребность в специальном оборудовании иинструменте для нарезания зубьев;

    Зубчатая передача не предохраняет машину от возможных опасных перегрузок.

    Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1):

    По взаимному расположению осей колес - с параллельными осями (цилиндрические, см. рис. 1, а-д), с пересекающимися осями (ко­нические, см. рис. 1, ж-и), со скрещивающимися осями (винтовые, см. рис. 1, е, к);

    По расположению зубьев относительно образующих колес - прямозубые, косозубые, шевронные и с криволинейным зубом;

    По конструктивному оформлению - открытые и закрытые;

    По окружной скорости - тихоходные (до 3 м/с), для средних скоростей (3-15 м/с), быстроходные (св. 15 м/с);

    По числу ступеней - одно- имногоступенчатые;

    По расположению зубьев в передаче и колесах - внешнее, внутрен­нее (см. рис. 1, д) и реечное зацепление (см. рис. 1, г);

    По форме профиля зуба - с эвольвентными, круговыми;

    По точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев.

    Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации.

    Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния.

    Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентро­вого расстояния.

    Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс.

    Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях.

    Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах.

    Конические передачи применяют только в тех случаях, когда это необходимо по условиям компновки машины; винтовые - лишь в специальных случаях.

    Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах.

    Зубчатые передачи. Общие сведения

    Зубчатой передачей называется трехзвенный механизм, в котором два подвижных зубчатых звена образуют с неподвижным звеном вращательную или поступательную пару. Зубчатое звено передачи может представлять собой колесо, сектор или рейку. Зубчатые передачи служат для преобразования вращательных движений или вращательного движения в поступательное.

    Все применяемые здесь и в дальнейшем термины, определения и обозначения, относящиеся к зубчатым передачам, соответствуют ГОСТ 16530—83 «Передачи зубчатые», ГОСТ 16531—83 «Передачи зубчатые цилиндрические» и ГОСТ 19325—73 «Передачи зубчатые конические».

    Зубчатое зацепление представляет собой высшую кинематическую пару, так как зубья теоретически соприкасаются между собой по линиям или точкам, причем меньшее зубчатое колесо пары называется шестерней, а большее—колесом. Сектор цилиндрического зубчатого колеса бесконечно большого диаметра называется зубчатой рейкой.

    Зубчатые передачи можно классифицировать по многим признакам, а именно: по расположению осей валов (с параллельными, пересекающимися, скрещивающимися осями и соосные); по условиям работы (закрытые — работающие в масляной ванне и открытые—работающие всухую или смазываемые периодически); по числу ступеней (одноступенчатые, многоступенчатые); по взаимному расположению колес (с внешним и внутренним зацеплением); по изменению частоты вращения валов (понижающие, повышающие); по форме поверхности, на которой нарезаны зубья (цилиндрические, конические); по окружной скорости колес (тихоходные при скорости до 3 м/с, среднескоростные при скорости до 15 м/с, быстроходные при скорости выше 15 м/с); по расположению зубьев относительно образующей колеса (прямозубые, косозубые, шевронные, с криволинейными зубьями); по форме профиля зуба (эвольвентные, круговые, циклоидальные).

    Кроме перечисленных существуют передачи с гибкими зубчатыми колесами, называемые волновыми.

    Основные виды зубчатых передач (рис.) с параллельными осями: а — цилиндрическая прямозубая, б— цилиндрическая косозубая, в— шевронная, г — с внутренним зацеплением; с пересекающимися осями: д— коническая прямозубая, е — коническая с тангенциальными зубьями, ж — коническая с криволинейными зубьями; со скрещивающимися осями: з— гипоидная, и— винтовая; к — зубчато-реечная прямозубая (гипоидная и винтовая передачи относятся к категории гиперболоидных передач).

    Зубчатая передача, оси которой расположены под углом 90°, называется ортогональной.

    Достоинство зубчатых передач заключается прежде всего в том, что при одинаковых характеристиках они значительно более компактны, по сравнению с другими видами передач. Кроме того, зубчатые передачи имеют более высокий к. п. д.(до 0,99 в одной ступени), сохраняют постоянство передаточного числа, создают относительно небольшую нагрузку на опоры валов, имеют большую долговечность и надежность работы в широких диапазонах мощностей (до десятков тысяч киловатт), окружных скоростей (до 150 м/с) и передаточных чисел (до нескольких сотен).

    Недостатки зубчатых передач: сложность изготовления точных передач, возможность возникновения шума и вибраций при недостаточной точности изготовления и сборки, невозможность бесступенчатого регулирования частоты вращения ведомого вала.

    Зубчатые передачи являются наиболее распространенными типами механических передач и находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т. д.; в приборостроении, часовой промышленности и др. Годовое производство зубчатых колес в нашей стране исчисляется сотнями миллионов штук, а габаритные размеры их от долей миллиметра до десяти и более метров. Такое широкое распространение зубчатых передач делает необходимой большую научно-исследовательскую работу по вопросам конструирования и технологии изготовления зубчатых колес и всестороннюю стандартизацию в этой области. В настоящее время стандартизованы термины, определения, обозначения, элементы зубчатых колес и зацеплений, основные параметры передач, расчет геометрии, расчет цилиндрических эвольвентных передач на прочность, инструмент для нарезания зубьев и многое другое.

    Основная кинематическая характеристика всякой зубчатой передачи — передаточное число, определяемое по стандарту как отношение числа зубьев колеса к числу зубьев шестерни и обозначаемое и, следовательно,

    Определение передаточного отношения остается таким же, как для других механических передач, т. е.

    Потери энергии в зубчатых передачах зависят от типа передачи, точности ее изготовления, смазки и складываются из потерь на трение в зацеплении, в опорах валов и (для закрытых передач) потерь на перемешивание и разбрызгивание масла. Потерянная механическая энергия переходит в тепловую, что в некоторых случаях делает необходимым тепловой расчет передачи.

    Потери в зацеплении характеризуются коэффициентом, потери в одной паре подшипников — коэффициентом и потери на перемешивание и разбрызгивание масла — коэффициентом. Общий к. п. д. одноступенчатой закрытой передачи

    Ориентировочно = 0,96...0,98 (закрытые передачи), = 0,95...0,96 (открытые передачи), = 0,99...0,995 (подшипники качения), = 0,96...0,98 (подшипники скольжения), = 0,98...0,99.

    Поверхности взаимодействующих зубьев колес, обеспечивающие заданное передаточное отношение, называются сопряженными. Процесс передачи движения в кинематической паре, образованной зубчатыми колесами, называется зубчатым зацеплением.


    Цилиндрическая прямозубая передача

    На рис. изображено цилиндрическое колесо с прямыми зубьями. Часть зубчатого колеса, содержащая все зубья, называется венцом; часть колеса, насаживаемая на вал, называется ступицей. Делительная окружность диаметром d делит зуб на две части — головку зуба высотой h a и ножку зуба высотой h f , высота зуба h = h а + h f . Расстояние между одноименными профилями соседних зубьев, измеренное по дуге делительной окружности, называется окружным делительным шагом зубьев и обозначается р. Шаг зубьев слагается из окружной толщины зуба s и ширины впадины е. Длина хорды, соответствующая окружной толщине зуба, называется толщиной по хорде и обозначается. Линейная величина, в раз меньшая окружного шага, называется окружным делительным модулем зубьев, обозначается т и измеряется в миллиметрах (впредь слова «окружной делительный» в терминах будем опускать)

    Модуль зубьев — основной параметр зубчатого колеса. Для пары колес, находящихся в зацеплении, модуль должен быть одинаковым. Модули зубьев для цилиндрических и конических передач регламентированы ГОСТ 9563—60*. Значения стандартных модулей от 1 до 14 мм приведены в табл.

    Модули, мм

    1-й ряд 1; 1,25; 1,5; 2; 2,5; 3; 4; 5; 6; 8; 10; 12

    2-й ряд 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7; 9; 11; 14

    Примечание . При назначении модулей 1-й ряд следует предпочитать 2-му.

    Все основные параметры зубчатых колес выражают через модули, а именно: шаг зубьев

    диаметр делительной окружности

    Последняя формула позволяет определить модуль как число миллиметров диаметра делительной окружности, приходящихся на один зуб колеса.

    В соответствии со стандартным исходным контуром для цилиндрических зубчатых колес высота головки зуба h a = т, высота ножки зуба h f = 1,25т. Высота зубьев цилиндрических колес

    h = h а + h f = 2,25 m .

    Диаметр вершин зубьев

    d a = m (z + 2),

    диаметр впадин

    d f = m (z – 2,5).

    Расстояние между торцами зубьев колеса называется шириной венца. Контакт пары зубьев цилиндрической прямозубой передачи теоретически происходит по линии, параллельной оси; длина линии контакта равна ширине венца. В процессе работы передачи пара зубьев входит в зацепление сразу по всей длине линии контакта (что сопровождается ударом зубьев), после чего эта линия перемещается по высоте зуба, оставаясь параллельной оси.

    Межосевое расстояние цилиндрической передачи с внешним и внутренним зацеплением

    называется делительным межосевым расстоянием (знак минус для внутреннего зацепления). Если межосевое расстояние отличается от делительного, то оно обозначается а w .

    ГОСТ 1643—81 на допуски для цилиндрических зубчатых колес и передач установлены двенадцать степеней точности, обозначенных цифрами (первая степень — наивысшая). Для каждой степени точности установлены нормы: кинематической точности, плавности работы и контакта зубьев колес и передач.

    В процессе изготовления зубчатых передач неизбежны погрешности в шаге, толщине и профиле зубьев, неизбежно радиальное биение венца, колебание межосевого расстояния при беззазорном зацеплении контролируемого и измерительного колес и т. д. Все это создает кинематическую погрешность в углах поворота ведомого колеса, выражаемую линейной величиной, измеряемой по дуге делительной окружности. Кинематическая погрешность определяется как разность между действительным и расчетным углом поворота ведомого колеса. Нормы кинематической точности регламентируют допуски на кинематическую погрешность и ее составляющие за полный оборот колеса. Нормы плавности устанавливают допуски на циклическую (многократно повторяющуюся за один оборот) кинематическую погрешность колеса и ее составляющие. Нормы контакта устанавливают размеры суммарного пятна контакта зубьев передачи (в процентах от размеров зубьев) и допуски на параметры, влияющие на этот контакт.

    В машиностроении зубчатые передачи общего назначения изготовляют по 6—9-й степеням точности. Цилиндрические прямозубые колеса 6-й степени точности применяют при окружных скоростях колес до 15 м/с; 1-й степени—до 10 м/с; 8-й степени — до 6 м/с; 9-й — до 2 м/с.

    Рассмотрим силы, действующие в зацеплении прямозубой цилиндрической передачи. При изображенном на этом рисунке контакте пары зубьев в полюсе П скольжение (следовательно, и трение) отсутствует, зацепление будет однопарным и силовое взаимодействие колес будет заключаться в передаче по линии давления (нормали NN ) силы нормального давления . Разложим эту силу на две взаимно перпендикулярные составляющие и , называемые соответственно окружным и радиальным усилиями, тогда

    где — угол зацепления.

    Если известен передаваемый вращающий момент Т и диаметр d делительной окружности, то

    (так как = 20°, то ).

    Сила , вызывает вращение ведомого колеса и изгибает вал колеса в горизонтальной плоскости, сила г изгибает вал в вертикальной плоскости.


    Цилиндрические передачи с косыми и шевронными зубьями

    Косозубыми называют колеса, у которых теоретическая делительная линия зуба является частью винтовой линии постоянного шага (теоретической делительной линией называется линия пересечения боковой поверхности зуба с делительной цилиндрической поверхностью). Линия зуба косозубых колес может иметь правое и левое направление винтовой линии. Угол наклона линии зуба обозначается.

    Косозубая передача с параллельными осями имеет противоположное направление зубьев ведущего и ведомого колес и относится к категории цилиндрических зубчатых передач, так как начальные поверхности таких зубчатых колес представляют собой боковую поверхность цилиндров. Передача с косозубыми колесами, оси которых скрещиваются, имеет одинаковое направление зубьев обоих колес и называется винтовой зубчатой передачей, которая относится к категории гиперболоидных зубчатых передач, так как начальные поверхности таких зубчатых колес являются частями однополостного гиперболоида вращения; делительные поверхности этих колес — цилиндрические.

    У косозубых передач контактные линии расположены наклонно по отношению к линии зуба, поэтому в отличие от прямых косые зубья входят в зацепление не сразу по всей длине, а постепенно, что обеспечивает плавность зацепления и значительное снижение динамических нагрузок и шума при работе передачи. Поэтому косозубые передачи по сравнению с прямозубыми допускают значительно большие предельные окружные скорости колес. Так, например, косозубые колеса 6-й степени точности применяют при окружной скорости до 30 м/с; 7-й степени—до 15 м/с; 8-й степени — до 10 м/с; 9-й — до 4 м/с.

    Силу нормального давления в зацеплении косозубых колес можно разложить на три взаимно перпендикулярные составляющие (рис. 7.10,б): окружную силу , радиальную силу и осевую силу , равные:

    где Т— передаваемый вращающий момент; — угол зацепления.

    Наличие осевой силы — существенный недостаток косозубых передач. Во избежание больших осевых сил в косозубой передаче угол наклона линии зуба ограничивают значениями =8...20°, несмотря на то, что с увеличением увеличивается прочность зубьев, плавность работы передачи, ее нагрузочная способность.

    В современных передачах косозубые колеса имеют преимущественное распространение.

    Цилиндрическое зубчатое колесо, венец которого по ширине состоит из участков с правыми и левыми зубьями, называется шевронным. Часть венца с зубьями одинакового направления называется полушевроном. Из технологических соображений шевронные колеса изготовляют двух типов: с дорожкой посредине колеса (а) и без дорожки (б). В шевронном колесе осевые силы на полушевронах, направленные в противоположные стороны, взаимно уравновешиваются внутри колеса и на валы и опоры валов не передаются. Поэтому у шевронных колес угол наклона зубьев принимают в пределах = 25...40°, в результате чего повышается прочность зубьев, плавность работы передачи и ее нагрузочная способность. Поэтому шевронные колеса применяют в мощных быстроходных закрытых передачах. Недостатком шевронных колес является высокая трудоемкость и себестоимость изготовления.

    Геометрические, кинематические и прочностные расчеты шевронной и косозубой передач аналогичны.

    Материалы цилиндрических колес

    Материалы для изготовления зубчатых колес в машиностроении— стали, чугуны и пластмассы; в приборостроении зубчатые колеса изготовляют также из латуни, алюминиевых сплавов и др. Выбор материала определяется назначением передачи, условиями ее работы, габаритами колес и даже типом производства (единичное, серийное или массовое) и технологическими соображениями.

    Общая современная тенденция в машиностроении — стремление к снижению материалоемкости конструкций, увеличению мощности, быстроходности и долговечности машины. Эти требования приводят к необходимости уменьшения массы, габаритов и повышения нагрузочной способности силовых зубчатых передач. Поэтому основные материалы для изготовления зубчатых колес — термообработанные углеродистые и легированные стали, обеспечивающие высокую объемную прочность зубьев, а также высокую твердость и износостойкость их активных поверхностей.

    Критерии работоспособности зубчатых колес и расчетная нагрузка

    Под действием сил нормального давления и трения зуб колеса испытывает сложное напряженное состояние, но решающее влияние на его работоспособность оказывают два фактора: контактные напряжения и напряжения изгиба , которые действуют на зуб только во время нахождения его в зацеплении и являются, таким образом, повторно-переменными.

    Повторно-переменные напряжения изгиба вызывают появление усталостных трещин у растянутых волокон основания зуба (место концентрации напряжений), которые с течением времени приводят к его поломке (рис. а, б).

    Повторно-переменные контактные напряжения и силы трения приводят к усталостному изнашиванию активных поверхностей зубьев. Так как сопротивление усталостному изнашиванию у опережающих поверхностей выше, чем у отстающих, то нагрузочная способность головок зубьев выше, чем ножек. Этим объясняется отслаивание и выкрашивание частиц материала на активной поверхности ножек зубьев (рис. в ) при отсутствии видимых усталостных повреждений головок. Усталостное изнашивание активных поверхностей зубьев характерно для работы закрытых передач.

    В открытых передачах и в передачах с плохой (загрязняемой) смазкой усталостное изнашивание опережается абразивным износом активных поверхностей зубьев (рис. г).

    В тяжелонагруженных и высокоскоростных передачах в зоне контакта зубьев возникает высокая температура, способствующая разрыву масляной пленки и образованию металлического контакта, в результате чего происходит заедание зубьев (рис. д), которое может завершиться прекращением относительного движения колес передачи.

    Итак, критерием работоспособности зубчатых передач является износостойкость активных поверхностей зубьев и их изгибная прочность.

    Назначение зубчатой передачи передавать движение от одного вала к другому с изменением угловых скоростей и моментов по величине и направлению. Такая передача состоит из двух колес. Передача вращающего момента в зубчатой передаче осуществляется благодаря давлению зубьев, находящихся в зацеплении, одного колеса на зубья другого. Зубчатые передачи широко распространены в России и за рубежом благодаря их достоинствам по сравнению с другими механическими передачами.

    Преимущества: большая долговечность и высокая надежность; высокий КПД (до 0,98); постоянство передаточного отношения; возможность применения в широком диапазоне моментов, скоростей и передаточных отношений; малые габаритные размеры; простота эксплуатации.

    Недостатки: наличие шума; невозможность плавного изменения передаточного отношения; необходимость высокой точности изготовления и монтажа, что увеличивает их стоимость.

    По исходному контуру зубчатые передачи делят:

    • на эвольвентные – преимущественно распространены в промышленности;
    • с круговым профилем (зацепление М. Л. Новикова) – применяются для передач с большими нагрузками.

    У эвольвентного зацепления рабочая поверхность зуба имеет эвольвентный профиль. В дальнейшем будем рассматривать лишь передачи с эвольвентным зацеплением.

    К зубчатым передачам относятся цилиндрические, конические, планетарные, волновые и др.

    Цилиндрические зубчатые передачи

    Цилиндрической зубчатой передачей называется передача с параллельными осями. Они бывают с прямым зубом (рис. 4.13, а), косым зубом, (рис. 4.13, б), и шевронные, (рис. 4.13, в) (β – угол наклона зуба). Рекомендуется максимальные передаточные числа в одной ступени не превышать, так как в противном случае габаритные размеры механизмов увеличиваются но сравнению с двухступенчатой передачей с тем же передаточным числом.

    Преимущества передач с шевронным и косым зубом по сравнению с прямым: бо́льшая прочность зуба на изгиб (бо́ль-

    Рис. 4.13

    шая нагрузочная способность); большая плавность зацепления и малый шум, а также меньшие динамические нагрузки.

    Недостатки , наличие осевой силы у косозубых передач; большая сложность изготовления.

    Косозубые передачи применяют при окружных скоростяхм/с; шевронные передачи – преимущественно в тяжело нагруженных передачах.

    Кинематика и геометрия цилиндрические зубчатых колес. Передаточное отношение, где– угловая частота вращения i-го вала.

    Для наружного зацепления (см. рис. 4.4, а – вращение колес в разные стороны) i берется со знаком "–", для внутреннего (см. рис. 4.4, б – вращение в одну сторону) со знаком "+". Из кинематического условия – равенства скоростей в месте контакта зубьев колес, , получаем ,

    где– частота вращения i-ro колеса;– делительный диаметр зубчатого колеса.

    Принимая ( – количество зубьев г-го колеса) и учитывая соотношение (4.3), получаем

    (4.4)

    где– передаточное число (всегда величина положительная). Принято меньшее из зубчатых колес в паре называть шестерней и обозначать "ш" или "1", а большее – колесом ("к" или "2"),

    Различают понижающие передачи (рис. 4.14, а), которые понижают частоту вращения и используются в редукторах;

    Рис. 4.14

    повышающие передачи (рпс. 4.14, б ), которые повышают частоту вращения и используются в мультипликаторах.

    Зубчатые колеса в основном используются с эвольвснт- ным зацеплением, которое обеспечивает постоянное передаточное отношение, малые скорости скольжения в зацеплении и несложное изготовление. Так как в передаче преобладает трение качения, а трение скольжения мало, то она имеет высокий КПД. Это зацепление мало чувствительно к отклонению межосевого расстояния. В эвольвентном зацеплении рабочая поверхность зуба имеет форму эвольвенты. Эвольвентой называют кривую, которую описывает точкаобразующей прямой N–N, перекатывающаяся без скольжения по основной окружности диаметра. Образующая прямая всегда перпендикулярна к эвольвенте, а отрезок является ее радиусом кривизны (рис. 4.15).

    Перейдем к рассмотрению геометрии эвольвентных зубчатых колес.

    На рис. 4.16 показано косозубое колесо, для которого нормальный шаг определяют по формуле

    где– окружной делительный шаг – расстояние между одноименными профилями соседних зубов, измеряемое по дуге делительной окружности зубчатого колеса;– угол наклона зуба.

    Рис. 4.15

    Рис. 4.16

    Окружной модуль– это величина, враз меньшая окружного шага:

    Разделив формулу (4.5) на π, получаем

    где– нормальный модуль, уточняется по ГОСТу, что обеспечивает возможность использования стандартного инструмента, например модульных фрез.

    Модуль является основным параметром зубчатого зацепления.

    Длина делительной окружности зубчатого колеса определяется по формуле

    Разделив обе части равенства на π, получаем выражение для определения делительного диаметра

    что подтверждает соотношение, принятое в формуле (4.4).

    Нарезание зубчатых колес производится инструментальной рейкой. Окружность зубчатого колеса, на которой шаг р и угол зацепления соответственно равны шагу и углу профиля а инструментальной рейки, называют делительной (d ). На рейке делительной плоскостью называют плоскость, на которой толщина зубьев равна ширине впадины. Сопряженные пары зубчатых колес касаются друг друга в полюсе зацепления. Окружности, проходящие через полюс зацепления Р и перекатывающиеся одна по другой без скольжения, называются начальными (рис. 4.17, а, где, – диаметры начальных окружностей;– угол зацепления). Отрезок АВ линии зацепления, ограниченный окружностями вершин зубьев шестерни и колеса, называется активным участком линии зацепления Эта линия определяет начало входа пары зубьев в зацепление и выхода из него.

    Расстояние между начальной и делительной окружностями называют смещением исходного контура Отношение этого смещения к т называют коэффициентом

    Рис. 4.17

    смещениях (рис. 4.18). Приделительный и начальный диаметры равны,.Припроисходит подрезание зуба, что устраняется введением положительного смещениях Если призадать смещение,то суммарный коэффициент смещения будет равен

    В этом случае зубья колес имеют одинаковую высоту, но высота головки и ножки зуба, диаметры окружностей вер-

    Рис. 4.18

    шин и впадин различны. Толщина зубьев шестерни увеличивается, а колеса уменьшается. Если условиене вы

    полняется, то нужно вводить коэффициент уравнительного смещения .

    Основные геометрические характеристики косозубой цилиндрической передачи внешнего зацепления при х = О приведены на рис. 4.17, б:

    Делительный диаметр

    Участок зацепления зубчатых колес показанна рис. 4.19, где– ширина зубьев шестерни и колеса;– рабочая ширина зуба, на которой происходит их контакт:

    где– относительная ширина зуба (большее значение для больших нагрузок);

    (4.12)

    – межосевое расстояние ("+" – для внешнего зацепления, "-" – для внутреннего).

    Рис. 4.19

    Геометрические параметры эквивалентного колеса для косозубой передачи. Аналитическое определение напряжений изгиба в опасном сечении косых зубьев затруднено из-за их криволинейной формы и наклонного расположения контактных линий. Поэтому переходят от косозубых колес к эвольвентным с прямым зубом. Напряжения, как и для прямых зубьев, можно определить, рассматривая нормальное сечениекосых зубьев (рис. 4.20).

    В нормальном сеченииполучаем эллипс с полуосями а и b:

    Используя известное из геометрии выражение, определяем радиус окружности эллипса в точке контакта Р с сопрягаемым колесом:

    Делительный диаметр эквивалентного зубчатого колеса

    Принимаяполучаем формулу . Подставив в нее , определяем количество зубьев у эквивалентного колеса

    Расчеты косозубых колес на прочность производят для эквивалентных цилиндрических прямозубых колес с диаметром делительной окружностии числом зубьев .

    Изготовление зубчатых колес. Существует два метода нарезания зубьев: копирование и обкатка.

    Метод копирования заключается в прорезании впадин между зубьями модульными фрезами дисковыми (рис. 4.21а) или пальцевыми (рис. 4.21, б). После прорезания каждой

    Рис. 4.20

    Рис. 4.21

    впадины заготовку поворачивают на шаг зацепления. Профиль впадины представляет собой копию профиля режущих кромок фрезы. Для нарезания зубчатых колес с разным числом зубьев необходим разный инструмент. Метод копирования малопроизводительный и менее точный, чем при обкатке.

    При шлифовании фрезу заменяют шлифовальным кругом соответствующего профиля.

    Метод обкатки основан на воспроизведении зацепления зубчатой пары, одним из элементов которой является режущий инструмент – червячная фреза (рис. 4.22, а ), долбяк (рис. 4.22, б ) или реечная гребенка (рис. 4.22, в ). При нарезании зуборезной гребенкой заготовка вращается вокруг своей оси, а инструментальная рейка 1 совершает возвратно-поступательное движение параллельно оси заготовки 2 и поступательное движение параллельно касательной к ободу заготовки. Гребенками нарезают прямозубые и косозубые колеса с большим модулем зацепления. При нарезании червячной фрезой, имеющей в осевом сечении форму инструментальной рейки, заготовка и фреза вращаются вокруг своих осей, обеспечивая непрерывность процесса. Долбяк имеет форму шестерни с режущей кромкой. Он совершает возвратно-поступательное движение вдоль оси заготовки и вращается вместе с заготовкой. Для нарезания цилиндрических колес

    Рис. 4.22

    с внешним расположением зубьев используют фрезу и гребенку, для нарезания колес с внутренним и внешним расположением зубьев – долбяки.

    Материалы зубчатых колес. Если механическая обработка производится после термической, то твердость зубчатых колес должна быть НВ 350. Такой материал применяется в мелкомодульных передачах и в передачах с модулем т< 2. Для уменьшения размеров зубчатых колес (обычно при т> 2) необходимо упрочнить рабочую поверхность зуба, что увеличивает допускаемые контактные напряжения. Объемная закалка используется для среднеуглеродистых сталей (например, 40Х, 40ХН и др.) до твердости HRCa > 45÷55. Такая закалка делает сердцевину менее пластичной, что способствует поломке зубьев. У современных зубчатых колес сохраняют вязкую сердцевину, а упрочняют лишь рабочую поверхность зуба термическими (поверхностная закалка ТВЧ), химико-термическими методами (цементация и азотирование), методом физического воздействия высоких энергий (лазерная закалка, ионное азотирование) и др. При цементировании сталей 12ХНЗА, 18Х2НМА, 15ХФ твердость поверхности 56–62 HRC3; при азотировании сталей 38Х2Ю, 38Χ2ΜΙΟΛ – 50–55 HRC3; при ионном азотировании – 80–90 HRCэ; при лазерном упрочнении – 56–60 HRCэ; при поверхностном упрочнении рабочей поверхности зуба масса редуктора снижается в 1,5–2 раза и соответственно уменьшаются его габаритные размеры.

    Точность зубчатой передачи. В стандарте предусмотрены степени точности зубчатых передач 1–12 (от более точной к наименее точной). Наибольшее распространение имеют следующие точности: 6 – повышенная точность (до v = 20 м/с); 7 – нормальная точность (до v = 12 м/с); 8 – пониженная точность (до v = 6 м/с); 9 – грубая точность (до v = 3 м/с). Значения наибольших допустимых скоростей v приведены для прямозубых передач, а для косозубых их необходимо увеличить примерно в 1,5 раза. Степень точности назначается с учетом условий работы передачи и предъявляемых к ней требованиям.

    Степень точности характеризуется следующими основными показателями:

    • нормой кинематической точности колеса, устанавливающей величину полной погрешности угла поворота зубчатых колес за один оборот. Она является важным показателем для высокоточных делительных механизмов;
    • нормой плавности работы колеса, определяющей величину составляющих полной погрешности угла поворота зубчатого колеса, многократно повторяющихся за один оборот передачи. Она связана с неточностью изготовления по шагу π профилю и вызывает дополнительные динамические нагрузки в зацеплении;
    • нормой контакта, характеризующей полноту прилегания боковых поверхностей сопряженных зубьев. Она оценивается следом на рабочей поверхности зуба после контакта с вращающимся колесом, зубья которого смазаны краской (рис. 4.23).

    Степень точности должна соответствовать окружной скорости в зацеплении: чем она выше, тем выше должна быть точность передачи. В зависимости от степени точности и размеров на отдельные элементы зацепления и передачи установлены допуски.

    Боковой зазор между зубьями(рис. 4.24, где – допуск; – минимальный и максимальный боковые зазоры) должен обеспечивать свободное вращение колес и устранить заклинивание. Он определяется видом сопряжения колес от Л до Н. Наибольший зазор у А, а наименьший у Н. Для передач с модулем т> 1 установлены виды сопряжений А, В, С, D, E, Н. Обычно используется сопряжение В, а у реверсивных передач С. Для мелкомодульных передач < 1) виды сопряжений D, E, F, G, H. Чаще используют Е, а в реверсивных передачах F. Допускается применять раз-

    Рис. 4.23

    Рис. 4.24

    личные степени точности но отдельным показателям, например при т ≥ 1 7-6-7-В (7 – норма кинематической точности, 6 – норма плавности, 7 – норма контакта), а при одинаковой точности по всем показателям (7-7-7-В) записывают 7-В.

    Виды разрушений зуба. При работе цилиндрических зубчатых передач возможны различные повреждения зубьев колес: механическое и молекулярно-механическое изнашивание, а также поломка зубьев.

    Механическое изнашивание. Оно включает:

    • выкрашивание рабочих поверхностей (рис. 4.25, а). Это наиболее частая причина выхода из стоя зубчатых передач, работающих со смазкой. Разрушения носят усталостный характер. Трещины развиваются до выкрашивания в основном на ножке зубьев в местах неровностей, оставшихся после окончательной обработки. В процессе работы от нагружения зуба число ямок растет и их размеры увеличиваются. Профиль зуба искажается, поверхность становится неровной, возрастают динамические нагрузки. Процесс выкрашивания усиливается, и рабочая поверхность на ножке зуба разрушается. Опасно прогрессивное выкрашивание – трещины от ямок могут распространяться и поражать всю поверхность ножек. Если смазочный материал отсутствует или его количество незначительно, выкрашивание наблюдается редко, так как образовавшиеся повреждения сглаживаются. Сопротивление выкрашиванию увеличивается с увеличением твердости поверхности зубьев, чистоты обработки и правильным подбором смазочного материала;
    • износ, зубьев (рис. 4.25, 6) – изнашивание рабочих поверхностей зубьев, которое возрастает с увеличением контактных напряжений и удельного скольжения. Износ искажает эвольвентный профиль, возрастают динамические

    Рис. 4.25

    нагрузки. Так как наибольшее скольжение происходит в начальных и конечных точках контакта зубьев, то наибольший износ наблюдается на ножках и головках зубьев. Износ сильно увеличивается из-за неровностей на рабочих поверхностях зуба, после обработки, а так же при загрязнении зубчатой передачи абразивными частицами (абразивный износ). Он наблюдается при работе у открытых механизмов. Если неровности меньше толщины масляной пленки, износ уменьшается, а при недостаточной смазке увеличивается. Его можно понизить уменьшением контактных напряжений σΗ, увеличением износостойкости поверхности зубьев (повысить твердость рабочих поверхностей зубьев, правильно выбрать смазочный материал).

    Молекулярно-механическое изнашивание. Такое изнашивание проявляется как заедание (рис. 4.25, в) при действии высоких давлений в зоне, где нет масляной пленки. Сопряженные поверхности зубьев сцепляются друг с другом настолько сильно, что частицы поверхности более мягкого зуба привариваются к поверхности зуба другого колеса. Образовавшиеся наросты на зубьях наносят на рабочие поверхности других зубьев борозды. Заедание особенно интенсивно в вакууме или когда рабочие поверхности зуба подвергаются высокому давлению. Заедание предупреждают повышением твердости и снижением шероховатости поверхностей, правильным подбором противозадирных масел.

    Для предотвращения выкрашивания рабочих поверхностей зубьев нужно проводить расчет передачи на контактную прочность.

    Поломка зубьев. Это наиболее опасный вид повреждения. Она носит усталостный характер и обычно отсутствует у зубчатых колес редукторов, когда их рабочие поверхности не упрочнены. Излом зубьев является следствием возникающих в них повторно-переменных напряжений от изгиба при перегрузках. Усталостные трещины образуются у основания зуба на той стороне, где от изгиба возникают наибольшие напряжения растяжения. Излом происходит в сечении у основания зуба.

    Поломку предупреждают расчетом на прочность по напряжениям изгиба.

    Силы в зацеплении цилиндрических передач. Приложенную к зубу косозубого колеса силу F можно разложить на три составляющие F t, F r, F a (рис. 4.26):

    где– окружная сила (Г – расчетный вращающий момент на колесе);– радиальная сила; осевая сила;– углы зацепления в торцевом и нормальном сечениях.

    У прямозубого колеса отсутствует осевая сила, т.е.

    Расчетные силы в зацеплении. При передаче нагрузки в зацеплении возникают, кроме статической, дополнительная динамическая составляющая силы, а также имеет место неравномерность распределения нагрузки по ширине зуба и распределение нагрузки между зубьями. Все изменения в нагрузке по сравнению с исходной учитывают коэффициенты нагрузкии

    Удельная, окружная и расчетная силы. В расчетах на контактную выносливость определяется по формуле

    (4.17)

    В расчетах на выносливость при изгибе

    Рис. 4.26

    – коэффициент нагрузки при изгибе;– коэффициент распределения нагрузки между зубьями;, – коэффициент, учитывающий неравномерность распределения нагрузки но ширине зуба;– коэффициент, учитывающий дополнительную динамическую нагрузку на зубья при изгибе.

    При работе привода динамические внешние нагрузки увеличивают силы и моменты. В расчетах на прочность необходимо использовать расчетную силу Fu расчетный момент Т:

    где – коэффициент динамичности внешней нагрузки; – номинальная сила и вращающий момент.

    Удельные окружные динамические нагрузки действующие на зубья колес, возникают при взаимодействии зубьев в зацеплении из-за неточности изготовления по шагу и их деформации. Эти силы определяют с учетом погрешности зацепления по шагу, зависящей от степени точности по нормам плавности и модуля передачи.

    Удельная окружная динамическая нагрузка для цилиндрических передач при расчете на контактную прочность

    (4.21)

    где – коэффициент, учитывающий твердость рабочих поверхностей и угол наклона зуба (табл. 4.6); – коэффициент, учитывающий погрешность зацепления по шагу

    Таблица 4.6

    Таблица 4.7

    Модуль 171, мм

    Степень точности по нормам плавности ГОСТ 1643–81

    (табл. 4.7);– окружная скорость в зацеплении, м/с;– межосевое расстояние, мм; и – передаточное число зубчатой пары;– предельное значение окружной динамической силы, Н/мм (см. табл. 4.7).

    В расчетах прочности зубьев на изгиб пдя цилиндрических передач

    (4.22)

    Величиныте же, что при проверочном расчете на контактную прочность (см. табл. 4.7), а значенияприведены в табл. 4.6.

    С увеличением степени точности по нормам плавности передачи дополнительные динамические нагрузки снижаются. То же происходит при переходе от прямых зубьев к косым. При повышении твердости зубьев нагрузки можно увеличивать. Отметим, что динамическая нагрузка с увеличением скорости растет, но до определенного предела.

    Коэффициенты внутренней динамической нагрузки на зубья. Для расчетов на контактную и изгибистую прочность эти коэффициенты определяются по формулам

    (4.23)

    где ;– окружная сила в зацеплении;– рабочая ширина зуба.

    Коэффициентыучитывают распределение на

    грузки между зубьями в расчетах на контактную и изгибистую прочность. Эти коэффициенты связаны с погрешностью изготовления. Для прямозубых передач; для косозубых передачзависят от точности зацепления и твердости рабочей поверхности зубьев: (табл. 4.8), так как у косозубых передач одновременно в зацеплении находится не менее двух пар зубьев. Без нагрузки у одной из пар появляется зазор, который устраняется при увеличении нагрузки за счет упругих деформаций.

    Коэффициентыучитывают неравномерность распределения нагрузки по ширине зубчатых венцов, связанной с деформацией валов, опор и с погрешностью их изготовления. Прогибы валов в местах расположения колес приводят к их перекосу и неравномерному распределению нагрузки по линии контакта. Концентрация нагрузки зависит от рас-

    Таблица 4.8

    Коэффициенты

    Степень точности

    К На, Xfa при НВ < 350

    К Иа, К Го при НВ > 350

    положения опор и твердости материала. Значения коэффициентов практически одинаковы при расчете на контактную и изгибную прочности:

    гдедля прямых зубьев,для косых зубьев;– коэффициент относительной твердости контактных поверхностей, учитывающий приработку зубьев:

    – коэффициент, учитывающий влияние прогиба вала, на который влияет расположение колес относительно опор: при симметричном расположении, при несимметричном>, при консольном .

    Наибольший перекос при нагружении возникает у валов с консольным расположением опор, а наименьший при симметричном.

    Контактные напряжения. Характер сопряжения некоторых деталей машин отличается тем, что передаваемая ими по малой поверхности нагрузка в зоне контакта вызывает высокие напряжения. Контактные напряжения характерны для зубчатых колес и подшипников качения. Контакт бывает точечным (шар на плоскости) и линейным (цилиндр на плоскости). При нагружении происходит деформация и зона контакта расширяется до области, ограниченной кругом, прямоугольником или трапецией, в которой возникают контактные напряжения. При больших контактных напряжениях, превышающих допускаемые, на контактной поверхности возможны повреждения поверхностей, которые появляются в виде вмятин, борозд, трещин. Такие повреждения могут возникнуть в зубчатых передачах и у подшипников, контактные напряжения которых изменяются во времени но прерывистому циклу. Переменные напряжения являются причиной усталостного разрушения рабочей поверхности зубьев: выкрашивания, износа, заедания. При больших контактных напряжениях статическое нагружение может вызвать пластическую деформацию и появление на поверхности вмятин.

    Решение контактной задачи. Решение контактной задачи было получено Г. Герцем. При ее решении использовались следующие допущения: материалы соприкасающихся тел однородны и изотропны, площадка контакта весьма мала, действующие силы направлены нормально к поверхности контакта, нагрузки создают в зоне контакта только упругие деформации и подчиняются закону Гука. В реальных конструкциях соблюдаются не все сформулированные условия, однако экспериментальные исследования подтвердили возможность использования формулы Герца для инженерных расчетов. Рассмотрим контактные напряженияпри сжатии двух цилиндров (рис. 4.27, а). На цилиндры действует удельная нарузка

    где F – нормальная сила; h – ширина цилиндров.

    В зоне контакта на участке шириной 4 наибольшее контактное напряжение определяется (при V ≠ v 2) по формуле

    (4.26)

    где– приведенный радиус кривизны для цилиндров с радиусамии– коэффициенты Пуассона для цилиндров;– модули упругости материалов цилиндров;;– удельная окружная сила (рис. 4.28).

    Рис. 4.27

    Рис. 4.28

    Приведенные модуль упругости и радиус

    (4.27)

    В формуле длязнак "+" ставится при контакте двух выпуклых поверхностей; знак "-" – для одной вогнутой, а другой выпуклой поверхности (рис. 4.27, б).

    Если коэффициенты Пуассона цилиндров равны, то формулу (5.26) можно записать гак:

    (4.28)

    Формулу (4.28) называют формулой Герца.

    Выражения (4.26) или (4.28) используются при выводе формул для контактных напряжений.

    Проверочный расчет цилиндрической прямозубой передачи на контактную прочность

    Расчетные контактные напряжения Для определения наибольших контактных напряжений в качестве исходной принимают формулу Герца (4.28). Подставив в выражения (4.27) значения,получим

    Подставивв формулу Герца, имеем

    (4.29)

    (знак "+" используется при внешнем зацеплении, а "-" – при внутреннем). Здесь Z, – коэффициент, учитывающий форму сопряженных поверхностей зубьев в полюсе зацепления,

    (для прямых зубьев , при , а – углы зацепления в торцевой плоскости у косозубых и прямозубых передач соответственно), значениядля косозубых передач приведены в табл. 4.9; коэффициент, учитывающий механические свойства материалов сопряженных зубчатых колес. Для стальных зубьев МПа1/2.

    Таблица 4.9

    Коэффициент Z учитывает суммарную длину контактных линий: для прямых зубьев , а для косых, где – коэффициент торцевого перекрытия. Он равен отношению активного участка АВ линии зацепления к окружному шагу (см. рис. 4.17, я). Он определяется количеством зубьев колес, находящихся одновременно в контакте (прив зацеплении находится одна пара, а при то одна, то две). Коэффициентεα влияет на плавность работы передачи. Для прямозубых передач он должен быть больше единицы (), иначе работа передачи может нарушиться (движение не будет передаваться). Коэффициентможно приближенно определить по формуле

    (4.30)

    где– число зубьев колес.

    Здесь знак "+" используется для внешнего зацепления, а "-" – для внутреннего.

    Для расчета косозубых передач можно принять среднее значениеI.

    Предельные контактные напряжения. Кривая выносливости для предельных контактных напряжений в логарифмических координатах приведена на рис. 4.29, где – пре-

    Рис. 4.29

    дельные контактные напряжения за расчетную долговечность для числа циклов переменных нагружений. Кривая выносливости в пределах

    (участок Л/)), где – предел контактной выносливости при базовом числе циклов нагружений , а назначается из условия отсутствия пластического течения материала или хрупкого разрушения на рабочей поверхности зуба при, описывается формулой:

    (4.32)

    Отметим, что , а , что связано с отнулевым циклом нагружения па поверхности зуба и с локальным действием нагрузки. Значения предельных напряжений выбирают по табл. 4.10.

    Таблица 4.10

    Твердость материала шестерни делают больше, чем у колеса, на 10–50 НВ. Базовое число циклов изменений напряжений для стальных колес определяется по формуле

    Число циклов изменения контактных напряжений на поверхности зуба, где– время работы цикла; с – число контактов одной поверхности зуба за один оборот; п – частота вращения, об/мии;– число циклов нагружения.

    При работе зуба двумя сторонами профиля у реверсивных передач в расчет принимают времяработы во время цикла одной из сторон, где нагрузка больше, так как контактные напряжения действуют лишь вблизи поверхности зуба и нагрузка одной рабочей поверхности не влияет на другую (рис. 4.30, а , где– время нагружения одной стороной зуба за один цикл;– время цикла нагружения), а при вращении в одну сторону– полное время нагружения (рис. 4.30, б). Если задан ресурс, то

    При наличии реверса, а при одностороннем вращении

    После определения значенийих подставляют в неравенство (4.31). Если значение функции, то следует принять, если, то. Выбираем из двух значений для шестерни σ//Пт i и колесаминимальное .

    Допускаемые контактные напряжения определяют по формуле

    где– запас прочности при расчете зуба на

    контактную прочность. Для механизмов с высокой надежностью следует принимать бо́льшие значения

    Рис. 4.30

    Условие контактной прочности:

    Если условие прочности не выполняется и , то при малом отклонении (менее 10%) нагрузки на зуб можно снизить, увеличивая ширину колес: , где – первичное и уточненное значения ширины зубчатого венца. При большем отклонении нужно увеличить модуль и повторить расчеты.

    Проектировочный расчет цилиндрической зубчатой передачи по контактным напряжениям

    Из формул для проверочного расчета по контактным напряжениям (4.29), (4.34), выразив удельную окружную силу через вращающий момент, получаем выражение для приближенного значения межосевого расстояния:

    (4.35)

    где – расчетный вращающий момент на шестерне, Н ∙ мм. В формуле знак "+" – для внешнего зацепления, знак "-" – для внутреннего.

    Если оба колеса стальные, МПа, тогда

    (4.36)

    При проведении проектировочного расчета неизвестна скорость, и поэтому в первом приближении задают . Вдальнейшем при проведении проверочного расчета если будет отличаться более чем на 20%, то необходимо повторно определитьс уточненным значением , входящим в

    После определения межосевого расстояния определяют приближенно модуль зацепления зубьев по формуле

    и уточняют его до значения т по ГОСТ 9563–80 (табл. 4.11). Затем определяют все геометрические характеристики зубчатых венцов для шестерни и колеса по формулам (4.9)-(4.12).

    Таблица 4.11

    Модули зубьев, мм

    Модули зубьев, мм

    Модули зубьев, мм

    Обычно ширину зубчатого венца у цилиндрической шестерни делают несколько больше, чем у колеса (для увеличения изгибной прочности зубьев).

    Возможен и другой вариант расчета, когда вместо межосевого расстояния из формулы (4.36) определяют делительный диаметр шестерни

    Определив|, находят модуль, уточняют его до значения т но ГОСТ 9563–80 и определяют все геометрические параметры зубчатых колес.

    Проверочный расчет на прочность при изгибе

    Расчетные изгибные напряжения. Рассмотрим цилиндрическую передачу с прямым зубом. Расчет проводим для предупреждения поломки зубьев. Максимальные напряжения возникают в заделке (у основания зуба), когда сила находится у окружности вершин и передается одной парой зубьев. Зуб будем рассматривать как консольную балку. Самая опасная точка – А, так как усталостные трещины и разрушения начинаются с растянутой сторон ы зубьев. На зуб действует в вершине сила F, которую разложим на две составляющие (рис. 4.31):

    В расчетах используем не поминальные, а расчетные силы, которые определяют, вводя коэффициент ■; соответственно получаем нормальные напряжения изгиба в основании зуба от изгибающего момента и напряжения сжатия от силы :

    где – момент сопротивления при изгибе; – площадь сечения у основания зуба.

    В опасной точкенапряжения от изгиба будут равны

    где – теоретический коэффициент концентрации напряжений у основания зуба.

    После заменынаи введения для косозубых передач коэффициентовиформула дляпримет вид

    где – удельная окружная сила; – коэффициент, учитывающий перекрытие зубьев; – коэффициент,учитывающий наклон зуба (получен экспериментально); – коэффициент формы зуба:

    Для внешнего зацепления;

    Для внутреннего зацепления. (4.39)

    При расчете косозубых передач по формуле (4.38) коэффициенты . У прямозубых передач

    Рис. 4.31

    Допускаемые напряжения изгиба зубьев. Вначале определим предел ограниченной выносливости зубьев на изгиб для отнулевого цикла. Предельные напряжения изгиба при одностороннем приложении нагрузки (цикл с коэффициентом асимметрии) для стальных зубчатых колес определяют из неравенства

    где– максимальные предельные напряжения изгиба, не вызывающие остаточных деформаций или хрупкого разрушения. Такие напряжения соответствуют числу циклов нагружений:

    ( приипри); – предел выносливости изгибных напряжений зуба при базовом числе циклов нагруженийи, он зависит от твер

    дости материала и вида термообработки (табл. 4.12).

    Для зубчатых колес из стали

    (4.41)

    где– коэффициент долговечности; /" = 9 для колес цемен

    тированных и азотированных с нешлифованной переходной поверхностью у основания зуба; в других случаях т = 6;

    Таблица 4.12

    – число циклов нагружений при изгибе. При заданном число циклов (см. рис.4.30, а) или (см. рис. 4.30, б); при заданном ресурсечисло циклов

    Допускаемое напряжение в опасном сечении АВ определяется по формуле

    где– коэффициент, учитывающий влияние шероховатости поверхности у корня зуба (при нешлифованных зубьях;при шлифованных зубьях);– коэффициент, учитывающий влияние двухстороннего приложения нагрузки (при одностороннем вращениии при реверсе для цементированных и азотированных сталей 0,75; в других случаях);– коэффициент запаса прочности при изгибе ().

    Для получения вероятности безотказной работы передачинужно принимать

    Проверочное условие прочности на изгиб

    Проверка проводится отдельно для шестерни 1 и колеса 2.

    Порядок расчета цилиндрической зубчатой передачи

    Исходные данные. Кинематическая схема, передаточное числои число зубьев; номинальный вращающий момент на ведущем валу; коэффициент динамичности ; частота вращения ведущего вала; график нагружения (циклограмма); гарантийная наработка(ресурс) в часах или в числе циклов нагружения; условия эксплуатации (интервал температур, наличие вибраций, внешние нагрузки и т.д.).

    Проектировочный расчет. Расчет выполняют в следующей последовательности:

    Проверочный расчет. При проведении расчета:

    Конструкция цилиндрических зубчатых колес. Зубчатые колеса изготавливают из круглого проката (прутка) и заготовок, получаемых ковкой, штамповкой и литьем. Шестерня изготовляется заодно с валом (вал – шестерня), если ее диаметр близок к диаметру вала. Зубья нарезают на выступающем венце (рис. 4.32). При диаметре венца, большем или равном диаметру вала, зубья углубляются в тело вала частично или полностью. Цилиндрические зубчатые колеса, насаживаемые на вал, можно выполнять со ступицей и в виде сплошного диска, где заготовка выполнена штамповкой или точением (рис. 4.33). Для соединения колес с валом используется шпоночное или шлицевое (зубчатое) соединение. При большом диаметре колесав диске делают 4–6 отверстий диаметром, что снижает его массу. Кроме размеров зубчатого венца, определяемых расчетным путем, можно использовать следующие рекомендации по выбору размеров других элементов цилиндрического зубчато-

    Рис. 4.32

    Рис. 4.33

    го колеса (см. рис. 4.33):

    Конструкции цилиндрических зубчатых редукторов см. на рис. 4.8 и 4.9.



    Вверх