Уравнение квадратичного тренда. Многократное скользящее выравнивание по прямой. Выбор наилучшего тренда

Ряда. Уравнение тренда.

Кривые роста, описывающие закономерности развития явлений во времени, - это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций (т. е. их подгонка к данным) в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

Определения численных значений (оценивание) параметров кривой;

Апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выравненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. те уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

В табл. 4 приводится перечень наиболее употребительных при анализе экономических рядов видов кривых и указываются соответствующие «симптомы», по которым можно определить, какой вид кривых подходит для выравнивания.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут в общем существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

Таблица 4

Характер изменения показателей, основанных
на средних приростах для различных видов кривых

Показатель Характер изменения показателей во времени Вид кривой
Примерно одинаковые Прямая
Линейно изменяются Парабола второй степени
Линейно изменяются Парабола третьей степени
Примерно одинаковые Экспонента
Линейно изменяются Логарифмическая парабола
Линейно изменяются Модифицированная экспонента
Линейно изменяются Кривая Гомперца

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1.Линейная форма тренда:

где - уровень ряда, полученный в результате выравнивания по прямой;

Начальный уровень тренда;

Средний абсолютный прирост; константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2.Параболическая (полином 2-ой степени) форма тренда:

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t.

3.Экспоненциальная форма тренда:

где - константа тренда; средний темп изменения уровня ряда.

При > 1 данный тренд может отражать тенденцию ускоренного и все более ускоряющегося возрастания уровней ряда. При < 1 – тенденцию постоянно, все более замедляющегося снижения уровней временного ряда.

4.Гиперболическая форма тренда (1 типа):

Данная форма тренда может отображать тенденцию процессов, ограниченных предельным значением уровня.

5.Логарифмическая форма тренда:

где - константа тренда.

Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

6.Обратнологарифмическая форма тренда:

7.Мультипликативная (степенная) форма тренда:

8.Обратная (гиперболическая 2 типа) форма тренда:

9.Гиперболическая форма тренда 3 типа:

10.Полином 3-ей степени:

Для всех нелинейных, относительно исходных переменных моделей (уравнений регрессии), а их здесь большинство, требуется провести вспомогательные преобразования, представленные в таблице ниже.

Таблица 5

Модели, сводящиеся к линейному тренду

Модель Уравнение Преобразование
Мультипликативная (Степенная)
Гиперболическая I типа
Гиперболическая II типа
Гиперболическая III типа
Логарифмическая
Обратнологариф­мическая

В формулах, перечисленных в таблице, как и во всех формулах, описывающих модель тренда, есть коэффициенты уравнений.

Однако, при практическом использовании линеаризации с помощью преобразования исследуемых переменных следует иметь ввиду, что оценки параметров, полученных линеаризацией с помощью М.Н.К. (метод наименьших квадратов), минимизируют сумму квадратов отклонений для преобразованных, а не исходных переменных. Поэтому полученные с помощью линеаризации зависимостей оценки нуждаются в уточнении.

Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать несколько новых дополнительных переменных, необходимых для выполнения дальнейшей работы, а также осуществить некоторые вспомогательные операции по преобразованию нелинейных моделей тренда в линейные.

Итак, нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Прежде всего, мы создадим переменную «Т», содержащую моменты времени четвертого периода. Так как четвертый период включает 12 лет, то переменная «Т» будет состоять из натуральных чисел от 1 до 12, соответствующих месяцам года.

Кроме того, для работы с некоторыми моделями тренда нам потребуется еще несколько переменных, содержание которых можно понять из их обозначения. Это переменные, получаемые из временного ряда: «Т^2», «Т^3», «1/Т» и «ln T». А также переменные, получаемые из исходных данных за четвертый период: «1/Import4» и «ln Import4». Также необходимо создать такую же таблицу для экспорта. Все это предлагается сделать на новом рабочем листе, скопировав туда данные за 4-й период.

Для этого воспользуемся уже известным нам меню Workbook/Insert.

В итоге получаем следующие электронные таблицы.

Рис. 38. Таблица со вспомогательными переменными для импорта

Рис. 39. Таблица со вспомогательными переменными для экспорта

Для аналитического выравнивания рядов динамики мы будем использовать модуль Multiple Regression в меню Statistics. Рассмотрим пример построения графического изображения и определение численных параметров тренда, выраженного линейной зависимостью.

Рис. 40. Модуль Multiple Regression в меню Statistics

Для выбора зависимых и независимых переменных воспользуемся кнопкой Variables.

В открывшемся окне в левом информационном поле мы выбираем зависимую переменную Y t , (в нашем случае это Import 4 – данные по четвертому периоду). Номера выбранных зависимых переменных отображаются внизу в поле Dependent var. (or list for batch). Соответственно в правом поле мы выбираем независимые переменные (в нашем случае одну – время «Т»). Номера выбранных независимых переменных высвечиваются внизу в поле Independent variable list.

После того, как завершен выбор переменных, нажимаем ОК. Система выдает окно с обобщенными результатами расчета параметров тренда (далее они будут рассмотрены более подробно) и возможностью выбора направления для последующего детального анализа. Заметим, что значение оценки, высвеченное красным цветом, указывает на статистическую значимость результатов.

Рис. 41. Закладка Advanced

На закладке располагается несколько кнопок, позволяющих получить максимально детализированные сведения по интересующему нас направлению анализа. При нажатии на нее получаем две таблицы с результатами регрессионного анализа. В первой представлены результаты расчета параметров уравнения регрессии, во второй – основные показатели уравнения.

Рис. 42. Основные показатели уравнения для данных импорта за четвертый период (линейный тренд)

Здесь N = – объем результативной переменной. В верхнем поле расположены показатели R, , Adjusted R, F, p, Std.Error of Estimate , означающие соответственно теоретическое корреляционное отношение, коэффициент детерминации, уточненный коэффициент детерминации, расчетное значение критерия Фишера (в скобках дано число степеней свободы), уровень значимости, стандартная ошибка уравнения (эти же показатели можно увидеть во второй таблице). В самой таблице нас интересуют столбец В , в котором расположены коэффициенты уравнения, столбец t и столбец p-level , обозначающие расчетное значение t-критерия и расчетный уровень значимости, необходимые для оценки значимости параметров уравнения. При этом система помогает пользователю: когда процедура предполагает проверку на значимость, STATISTICA выделяет значимые элементы красным цветом (т.е. отвергается нулевая гипотеза о равенстве параметров нулю). В нашем случае |t факт | > t табл для обоих параметров, следовательно они значимы.

Рис. 43. Параметры уравнения регрессии для данных импорта за четвертый период (линейный тренд)

Для оценки статистической значимости уравнения в целом на закладке Advanced воспользуемся кнопкой ANOVA (Goodness Of Fit), позволяющей получить таблицу дисперсионного анализа и значение F-критерия Фишера.

Рис. 44. Таблица дисперсионного анализа

Sums of Squares – сумма квадратов отклонений: на пересечении со строкой Regression – сумма квадратов отклонений теоретических (полученных по уравнению регрессии) значений признака от средней величины. Эта сумма квадратов используется для расчета факторной, объясненной дисперсии зависимой переменной. На пересечении со строкой Residual – сумма квадратов отклонений теоретических и фактических значений переменной (для расчета остаточной, необъясненной дисперсии), Total – отклонений фактических значений переменной от средней величины (для расчета общей дисперсии). Столбец df – число степеней свободы, Means Squares обозначает дисперсию: на пересечении со строкой Regression – факторную, со строкой Residual - остаточную, F – критерий Фишера, используемый для оценки общей значимости уравнения и коэффициента детерминации, p-level – уровень значимости.

Параметры уравнения тренда в STATISTICA, как и в большинстве других программ, рассчитываются по метод наименьших квадратов (МНК).

Метод позволяет получить значения параметров, при которых обеспечивается минимизация суммы квадратов отклонений фактических уровней от сглаженных, т. е. полученных в результате аналитического выравнивания.

Математический аппарат метода наименьших квадратов описан в большинстве работ по математической статистике, поэтому нет необходимости подробно на нем останавливаться. Напомним только некоторые моменты. Так, для нахождения параметров линейного тренда (2.10) необходимо решить систему уравнений:

Данная система уравнений упрощается, если значения t подобрать таким образом, чтобы их сумма равнялась нулю, т. е. начало отсчета времени перенести в середину рассматриваемого периода. Очевидно, что перенос начала координат имеет смысл только при ручной обработке динамического ряда.

Если , то , .

В общем виде систему уравнений для нахождения параметров полинома можно записать как

При сглаживании временного ряда по экспоненте (которая часто используется в экономических исследованиях) для определения параметров следует применить метод наименьших квадратов к логарифмам исходных данных.

После переноса начала отсчета времени в середину ряда получают:

следовательно:

Если наблюдаются более сложные изменения уровней временного ряда и выравнивание осуществляется по показательной функции вида , то параметры определяются в результате решения следующей системы уравнений:

В практике исследования социально-экономических явлений исключительно редко встречаются динамические ряды, характеристики которых полностью соответствуют признакам эталонных математических функций. Это обусловлено значительным числом факторов разного характера, влияющих на уровни ряда и тенденцию их изменения.

На практике чаще всего строят целый ряд функций, описывающих тренд, а затем выбирают лучшую на основе того или иного формального критерия.

Рис. 45. Закладка Residuals/Assumptions/Prediction

Здесь воспользуемся кнопкой Perform Residual Analysis, открывающую модуль анализа остатков. Под остатками (Residuals) в данном случае понимается отклонение исходных значений динамического ряда от прогнозируемых, в соответствии с выбранным уравнением тренда. Сразу же переходим к закладке Advanced.

Рис. 46. Закладка Advanced в Perform Residual Analysis

Воспользуемся кнопкой Summary: Residuals & Predicted, позволяющую получить одноименную таблицу, которая содержит исходные значения динамического ряда Observed Value, прогнозируемые значения по выбранной модели тренда Predicted Value, отклонения прогнозных значений от исходных Residual Value, а также различные специальные показатели и стандартизированные значения. Также в таблице представлены максимальное, минимальное значения, средняя и медиана по каждому столбцу.

Рис. 47. Таблица, содержащая показатели и специальные значения для линейного тренда

В данной таблицы наибольший интерес для нас представляет столбец Residual Value, значения которого в дальнейшем используются для характеристики качества подбора тренда, а также столбец Predicted Value, который содержит прогнозные значения динамического ряда в соответствии с выбранной моделью тренда (в нашем случае – линейной).

Далее построим график исходного временного ряда совместно с вычисленными в соответствии с линейным уравнением тренда прогнозными значениями для четвертого периода. Для этого лучше всего скопировать значения из столбца Predicted Value в таблицу, в которой были созданы переменные для построения трендов.

Рис. 48. Третий период динамического ряда импорта (млрд. $) и линейный тренд

Итак, мы получили все необходимые результаты расчета параметров тренда, выраженного линейной моделью, для четвертого периода исходного динамического ряда, а также построили график данного ряда, совмещенный с линией тренда. Далее будут представлены остальные модели трендов.

Следует заметить, что в результате линеаризации степенной и экспоненциальной функций STATISTICA возвращает значение линеаризованной функции равное , поэтому для дальнейшего использования их надо преобразовать с помощью следующей элементарной транзакции , в том числе и для построения графических изображений. Для гиперболических функций, а также для обратнологарифмической функции необходимо выполнить преобразование вида .

Для этого также целесообразно создать дополнительные переменные и получить их с помощью формул на основе уже имеющихся переменных.

Итак, при решении задачи с помощью процедуры Multiple Regression, необходимо в качестве переменных выбрать натуральные логарифмы исходного ряда и оси времени.

Рис. 49. Основные показатели уравнения для данных импорта за третий период (степенная модель)

Рис. 50. Параметры уравнения регрессии для данных импорта за третий период (степенная модель)

Рис. 51. Таблица дисперсионного анализа

Рис. 52. Таблица, содержащая показатели и специальные значения для степенной модели

Затем, как и в случае с линейным трендом, копируем значения из столбца Predicted Value в таблицу, но там для этого строим еще одну переменную, в которой получаем прогнозные значения по степенной функции с помощью преобразования .

Рис. 53. Создание дополнительной переменной

Рис. 54. Таблица со всеми переменными

Рис. 55. Третий период динамического ряда импорта (млрд. $) и степенная модель

Рис.56. Основные показатели уравнения для данных импорта за третий период (экспоненциальная модель)

Рис. 57. Третий период динамического ряда импорта (млрд. $) и экспоненциальная модель

Рис.58. Основные показатели уравнения для данных импорта за третий период (обратная модель)

Рис. 59. Третий период динамического ряда импорта (млрд. $) и обратная модель

Рис. 60. Основные показатели уравнения для данных импорта за третий период (полином второй степени)

Рис. 61. Третий период динамического ряда импорта (млрд. $) и полином второй степени

Рис. 62. Основные показатели уравнения для данных импорта за третий период (полином 3-й степени)

Рис. 63. Третий период динамического ряда импорт (млрд. $) и полином 3-й степени


Рис. 64. Основные показатели уравнения для данных импорта за третий период (гипербола 1-ого вида)

Рис. 65. Третий период динамического ряда импорт (млрд. $) и гипербола 1-ого вида


Рис. 66. Основные показатели уравнения для данных импорта за третий период (гипербола 3 типа)

Рис. 67. Третий период динамического ряда импорт и гипербола 3 типа


Рис. 68. Основные показатели уравнения для данных импорта за третий период (логарифмическая модель)

Рис. 69. Третий период динамического ряда импорт (млрд. $) и логарифмическая модель


Рис. 70. Основные показатели уравнения для данных импорта за третий период (обратнологарифмическая модель)

Рис. 71. Третий период динамического ряда импорт (млрд. $) и обратнологарифмическая модель


Затем построим таблицу со вспомогательными переменными для построения трендов для экспорта.

Рис. 72. Таблица со вспомогательными переменными

Проделаем те же операции что и для четвертого период импорта.

Рис. 73. Основные показатели уравнения для данных экспорта за третий период (линейная модель)

Рис. 74. Третий период динамического ряда экспорта (млрд. $) и линейная модель

Рис. 75. Основные показатели уравнения для данных экспорта за третий период (степенная модель тренда)

Рис. 76. Третий период динамического ряда экспорта и степенная модель


Рис. 77. Основные показатели уравнения для данных экспорта за третий период (экспоненциальная модель тренда)

Рис. 78. Третий период динамического ряда экспорта (млрд. $) и экспоненциальная модель


Рис. 79. Основные показатели уравнения для данных экспорта за третий период (обратная модель тренда)

Рис. 80. Третий период динамического ряда экспорта (млрд. $) и обратная модель


Рис. 81. Основные показатели уравнения для данных экспорта за третий период (полином второй степени)

Рис. 82. Третий период динамического ряда экспорта (млрд. $) и полином второй степени


Рис. 83. Основные показатели уравнения для данных экспорта за третий период (полином третей степени)

Рис. 84. Третий период динамического ряда экспорта (млрд. $) и полином третей степени


Рис. 85. Основные показатели уравнения для данных экспорта за третий период (гипербола 1-ого вида)

Рис. 86. Третий период динамического ряда экспорта и гипербола 1-ого типа


Рис. 87. Основные показатели уравнения для данных экспорта за третий период (гипербола 3-ого вида)

Рис. 88. Третий период динамического ряда экспорта (млрд. $) и гипербола 3-ого типа


Рис. 89. Основные показатели уравнения для данных экспорта за третий период (логарифмическая модель)

Рис. 90. Третий период динамического ряда экспорта (млрд. $) и логарифмическая модель


Рис. 91. Основные показатели уравнения для данных экспорта за третий период (обратнологарифмическая модель)

Рис. 91. Третий период динамического ряда экспорта (млрд. $) и обратнологарифмическая модель


Выбор наилучшего тренда

Как уже отмечалось, проблема выбора формы кривой - одна из основных проблем, с которой сталкиваются при выравнивании ряда динамики. Решение этой проблемы во многом определяет результаты экстраполяции тренда. В большинстве специализированных программ для выбора лучшего уравнения тренда предоставляется возможность воспользоваться следующими критериями:

Минимальное значение среднеквадратической ошибки тренда:

,

где - фактические уровни ряда динамики;

Уровни ряда, определенные по уравнению тренда;

n - число уровней ряда;

p - число факторовв уравнении тренда.

- минимальное значение остаточной дисперсии:

Минимальное значение средней ошибки аппроксимации;

Минимальное значение средней абсолютной ошибки;

Максимальное значение коэффициента детерминации;

Максимальное значение F- критерия Фишера:

: ,

где k – число степеней свободы факторной дисперсии,равное числу независимых переменных (признаков-факторов) в уравнении;

n-k-1 - число степеней свободы остаточной дисперсии.

Применение формального критерия для выбора формы кривой, по-видимому, даст практически пригодные результаты в том случае, если отбор будет проходить в два этапа. На первом этапе отбираются зависимости, пригодные с позиции содержательного подхода к задаче, в результате чего происходит ограничение круга потенциально приемлемых функций. На втором этапе для этих функций подсчитываются значения критерия и выбирается та из кривых, которой соответствует минимальное его значение.

В данном пособии для идентификации тренда используется формальный метод, который основывается на использовании численного критерия. В качестве такого критерия рассматривается максимальный коэффициент детерминации:

.

Расшифровка обозначений и формулы данных показателей даны в предыдущих разделах. Коэффициент детерминации показывает, какая доля общей дисперсии результативного признака обусловлена вариацией признака – фактора. В таблицах STATISTICA он обозначается как R?.

В следующей ниже таблице будут представлены уравнения моделей трендов и коэффициенты детерминации данных импорта.

Таблица 6

Уравнения моделей трендов и коэффициенты детерминации Import.

Сопоставив значения коэффициентов детерминации для различных типов кривых можно сделать вывод о том, что для исследуемого третьего периода лучшей формой тренда будет полином третей степени для импорта и для экспорта.

Далее необходимо проанализировать выбранную модель тренда с точки зрения ее адекватности реальным тенденциям исследуемого временного ряда через оценку надежности полученных уравнений трендов по F-критерию Фишера. В данном случае расчетное значение критерия Фишера для импорта равно 16,573; для экспорта – 13,098, а табличное значение при уровне значимости равно 3,07. Следовательно, эта модель тренда признается адекватно отражающей реальную тенденцию изучаемого явления.

В трех предыдущих заметках описаны регрессионные модели, позволяющие прогнозировать отклик по значениям объясняющих переменных. В настоящей заметке мы покажем, как с помощью этих моделей и других статистических методов анализировать данные, собранные на протяжении последовательных временных интервалов. В соответствии с особенностями каждой компании, упомянутой в сценарии, мы рассмотрим три альтернативных подхода к анализу временных рядов.

Материал будет проиллюстрирован сквозным примером: прогнозирование доходов трех компаний . Представьте себе, что вы работаете аналитиком в крупной финансовой компании. Чтобы оценить инвестиционные перспективы своих клиентов, вам необходимо предсказать доходы трех компаний. Для этого вы собрали данные о трех интересующих вас компаниях - Eastman Kodak, Cabot Corporation и Wal-Mart. Поскольку компании различаются по виду деловой активности, каждый временной ряд обладает своими уникальными особенностями. Следовательно, для прогнозирования необходимо применять разные модели. Как выбрать наилучшую модель прогнозирования для каждой компании? Как оценить инвестиционные перспективы на основе результатов прогнозирования?

Обсуждение начинается с анализа ежегодных данных. Демонстрируются два метода сглаживания таких данных: скользящее среднее и экспоненциальное сглаживание. Затем демонстрируется процедура вычисления тренда с помощью метода наименьших квадратов и более сложные методы прогнозирования. В заключение, эти модели распространяются на временные ряды, построенные на основе ежемесячных или ежеквартальных данных.

Скачать заметку в формате или , примеры в формате

Прогнозирование в бизнесе

Поскольку экономические условия с течением времени изменяются, менеджеры должны прогнозировать влияние, которое эти изменения окажут на их компанию. Одним из методов, позволяющих обеспечить точное планирование, является прогнозирование. Несмотря на большое количество разработанных методов, все они преследуют одну и ту же цель - предсказать события, которые произойдут в будущем, чтобы учесть их при разработке планов и стратегии развития компании.

Современное общество постоянно испытывает необходимость в прогнозировании. Например, чтобы выработать правильную политику, члены правительства должны прогнозировать уровни безработицы, инфляции, промышленного производства, подоходного налога отдельных лиц и корпораций. Чтобы определить потребности в оборудовании и персонале, директора авиакомпаний должны правильно предсказать объем авиаперевозок. Для того чтобы создать достаточное количество мест в общежитии, администраторы колледжей или университетов хотят знать, сколько студентов поступят в их учебное заведение в следующем году.

Существуют два общепринятых подхода к прогнозированию: качественный и количественный. Методы качественного прогнозирования особенно важны, если исследователю недоступны количественные данные. Как правило, эти методы носят весьма субъективный характер. Если статистику доступны данные об истории объекта исследования, следует применять методы количественного прогнозирования. Эти методы позволяют предсказать состояние объекта в будущем на основе данных о его прошлом. Методы количественного прогнозирования разделяются на две категории: анализ временных рядов и методы анализа причинно-следственных зависимостей.

Временной ряд - это набор числовых данных, полученных в течение последовательных периодов времени. Метод анализа временных рядов позволяет предсказать значение числовой переменной на основе ее прошлых и настоящих значений. Например, ежедневные котировки акций на Нью-Йоркской фондовой бирже образуют временной ряд. Другим примером временного ряда являются ежемесячные значения индекса потребительских цен, ежеквартальные величины валового внутреннего продукта и ежегодные доходы от продаж какой-нибудь компании.

Методы анализа причинно-следственных зависимостей позволяют определить, какие факторы влияют на значения прогнозируемой переменной. К ним относятся методы множественного регрессионного анализа с запаздывающими переменными, эконометрическое моделирование, анализ лидирующих индикаторов, методы анализа диффузионных индексов и других экономических показателей. Мы расскажем лишь о методах прогнозирования на основе анализа временны х рядов.

Компоненты классической мультипликативной модели временны х рядов

Основное предположение, лежащее в основе анализа временных рядов, состоит в следующем: факторы, влияющие на исследуемый объект в настоящем и прошлом, будут влиять на него и в будущем. Таким образом, основные цели анализа временных рядов заключаются в идентификации и выделении факторов, имеющих значение для прогнозирования. Чтобы достичь этой цели, были разработаны многие математические модели, предназначенные для исследования колебаний компонентов, входящих в модель временного ряда. Вероятно, наиболее распространенной является классическая мультипликативная модель для ежегодных, ежеквартальных и ежемесячных данных. Для демонстрации классической мультипликативной модели временных рядов рассмотрим данные о фактических доходах компании Wm.Wrigley Jr. Company за период с 1982 по 2001 годы (рис. 1).

Рис. 1. График фактического валового дохода компании Wm.Wrigley Jr. Company (млн. долл. в текущих ценах) за период с 1982 по 2001 годы

Как видим, на протяжении 20 лет фактический валовой доход компании имел возрастающую тенденцию. Эта долговременная тенденция называется трендом. Тренд - не единственный компонент временного ряда. Кроме него, данные имеют циклический и нерегулярный компоненты. Циклический компонент описывает колебание данных вверх и вниз, часто коррелируя с циклами деловой активности. Его длина изменяется в интервале от 2 до 10 лет. Интенсивность, или амплитуда, циклического компонента также не постоянна. В некоторые годы данные могут быть выше значения, предсказанного трендом (т.е. находиться в окрестности пика цикла), а в другие годы - ниже (т.е. быть на дне цикла). Любые наблюдаемые данные, не лежащие на кривой тренда и не подчиняющиеся циклической зависимости, называются иррегулярными или случайными компонентами . Если данные записываются ежедневно или ежеквартально, возникает дополнительный компонент, называемый сезонным . Все компоненты временных рядов, характерных для экономических приложений, приведены на рис. 2.

Рис. 2. Факторы, влияющие на временные ряды

Классическая мультипликативная модель временного ряда утверждает, что любое наблюдаемое значение является произведением перечисленных компонентов. Если данные являются ежегодными, наблюдение Y i , соответствующее i -му году, выражается уравнением:

(1) Y i = T i * C i * I i

где T i - значение тренда, C i i -ом году, I i i -ом году.

Если данные измеряются ежемесячно или ежеквартально, наблюдение Y i , соответствующее i-му периоду, выражается уравнением:

(2) Y i = T i *S i *C i *I i

где T i - значение тренда, S i - значение сезонного компонента в i -ом периоде, C i - значение циклического компонента в i -ом периоде, I i - значение случайного компонента в i -ом периоде.

На первом этапе анализа временных рядов строится график данных и выявляется их зависимость от времени. Сначала необходимо выяснить, существует ли долговременное возрастание или убывание данных (т.е. тренд), или временной ряд колеблется вокруг горизонтальной линии. Если тренд отсутствует, то для сглаживания данных можно применить метод скользящих средних или экспоненциального сглаживания.

Сглаживание годовых временных рядов

В сценарии мы упомянули о компании Cabot Corporation. Имея штаб-квартиру в Бостоне, штат Массачусеттс, она специализируется на производстве и продаже химикатов, строительных материалов, продуктов тонкой химии, полупроводников и сжиженного природного газа. Компания имеет 39 заводов в 23 странах. Рыночная стоимость компании составляет около 1,87 млрд. долл. Ее акции котируются на Нью-Йоркской фондовой бирже под аббревиатурой СВТ. Доходы компании за указанный период приведены на рис. 3.

Рис. 3. Доходы компании Cabot Corporation в 1982–2001 годах (млрд. долл.)

Как видим, долговременная тенденция повышения доходов затемнена большим количеством колебаний. Таким образом, визуальный анализ графика не позволяет утверждать, что данные имеют тренд. В таких ситуациях можно применить методы скользящего среднего или экспоненциального сглаживания.

Скользящие средние. Метод скользящих средних весьма субъективен и зависит от длины периода L , выбранного для вычисления средних значений. Для того чтобы исключить циклические колебания, длина периода должна быть целым числом, кратным средней длине цикла. Скользящие средние для выбранного периода, имеющего длину L , образуют последовательность средних значений, вычисленных для последовательностей длины L . Скользящие средние обозначаются символами MA(L) .

Предположим, что мы хотим вычислить пятилетние скользящие средние значения по данным, измеренным в течение n = 11 лет. Поскольку L = 5, пятилетние скользящие средние образуют последовательность средних значений, вычисленных по пяти последовательным значениям временного ряда. Первое из пятилетних скользящих средних значений вычисляется путем суммирования данных о первых пяти годах с последующим делением на пять:

Второе пятилетнее скользящее среднее вычисляется путем суммирования данных о годах со 2-го по 6-й с последующим делением на пять:

Этот процесс продолжается, пока не будет вычислено скользящее среднее для последних пяти лет. Работая с годовыми данными, следует полагать число L (длину периода, выбранного для вычисления скользящих средних) нечетным. В этом случае невозможно вычислить скользящие средние для первых (L – 1)/2 и последних (L – 1)/2 лет. Следовательно, при работе с пятилетними скользящими средними невозможно выполнить вычисления для первых двух и последних двух лет. Год, для которого вычисляется скользящее среднее, должен находиться в середине периода, имеющего длину L . Если n = 11, a L = 5, первое скользящее среднее должно соответствовать третьему году, второе - четвертому, а последнее - девятому. На рис. 4 показаны графики 3- и 7-летних скользящих средних, вычисленные для доходов компании Cabot Corporation за период с 1982 по 2001 годы.

Рис. 4. Графики 3- и 7-летних скользящих средних, вычисленные для доходов компании Cabot Corporation

Обратите внимание на то, что при вычислении трехлетних скользящих средних проигнорированы наблюдаемые значения, соответствующие первому и последнему годам. Аналогично при вычислении семилетних скользящих средних нет результатов для первых и последних трех лет. Кроме того, семилетние скользящие средние намного больше сглаживают временной ряд, чем трехлетние. Это происходит потому, что семилетним скользящим средним соответствует более долгий период. К сожалению, чем больше длина периода, тем меньшее количество скользящих средних можно вычислить и представить на графике. Следовательно, больше семи лет для вычисления скользящих средних выбирать нежелательно, поскольку из начала и конца графика выпадет слишком много точек, что исказит форму временного ряда.

Экспоненциальное сглаживание. Для выявления долговременных тенденций, характеризующих изменения данных, кроме скользящих средних, применяется метод экспоненциального сглаживания. Этот метод позволяет также делать краткосрочные прогнозы (в рамках одного периода), когда наличие долговременных тенденций остается под вопросом. Благодаря этому метод экспоненциального сглаживания обладает значительным преимуществом над методом скользящих средних.

Метод экспоненциального сглаживания получил свое название от последовательности экспоненциально взвешенных скользящих средних. Каждое значение в этой последовательности зависит от всех предыдущих наблюдаемых значений. Еще одно преимущество метода экспоненциального сглаживания над методом скользящего среднего заключается в том, что при использовании последнего некоторые значения отбрасываются. При экспоненциальном сглаживании веса, присвоенные наблюдаемым значениям, убывают со временем, поэтому после выполнения вычислений наиболее часто встречающиеся значения получат наибольший вес, а редкие величины - наименьший. Несмотря на громадное количество вычислений, Excel позволяет реализовать метод экспоненциального сглаживания.

Уравнение, позволяющее сгладить временной ряд в пределах произвольного периода времени i , содержит три члена: текущее наблюдаемое значение Y i , принадлежащее временному ряду, предыдущее экспоненциально сглаженное значение E i –1 и присвоенный вес W .

(3) E 1 = Y 1 E i = WY i + (1 – W)E i–1 , i = 2, 3, 4, …

где E i – значение экспоненциально сглаженного ряда, вычисленное для i -го периода, E i –1 – значение экспоненциально сглаженного ряда, вычисленное для (i – 1)-гo периода, Y i – наблюдаемое значение временного ряда в i -ом периоде, W – субъективный вес, или сглаживающий коэффициент (0 < W < 1).

Выбор сглаживающего коэффициента, или веса, присвоенного членам ряда, является принципиально важным, поскольку он непосредственно влияет на результат. К сожалению, этот выбор до некоторой степени субъективен. Если исследователь хочет просто исключить из временного ряда нежелательные циклические или случайные колебания, следует выбирать небольшие величины W (близкие к нулю). С другой стороны, если временной ряд используется для прогнозирования, необходимо выбрать большой вес W (близкий к единице). В первом случае четко проявляются долговременные тенденции временного ряда. Во втором случае повышается точность краткосрочного прогнозирования (рис. 5).

Рис. 5 Графики экспоненциально сглаженного временного ряда (W=0,50 и W=0,25) для данных о доходах компании Cabot Corporation за период с 1982 по 2001 годы; формулы расчета см. в файле Excel

Экспоненциально сглаженное значение, полученное для i -го временного интервала, можно использовать в качестве оценки предсказанного значения в (i +1)-м интервале:

Для предсказания доходов компании Cabot Corporation в 2002 году на основе экспоненциально сглаженного временного ряда, соответствующего весу W = 0,25, можно использовать сглаженное значение, вычисленное для 2001 года. Из рис. 5 видно, что эта величина равна 1651,0 млн. долл. Когда станут доступными данные о доходах компании в 2002 году, можно применить уравнение (3) и предсказать уровень доходов в 2003 году, используя сглаженное значение доходов в 2002 году:

Пакет анализа Excel способен построить график экспоненциального сглаживания в один клик. Пройдите по меню Данные Анализ данных и выберите опцию Экспоненциальное сглаживание (рис. 6). В открывшемся окне Экспоненциальное сглаживание задайте параметры. К сожалению, процедура позволяет построить только один сглаженный ряд, поэтому, если вы хотите «поиграть» с параметром W , повторите процедуру.

Рис. 6. Построение графика экспоненциального сглаживания с помощью Пакета анализа

Вычисление трендов с помощью метода наименьших квадратов и прогнозирование

Среди компонентов временного ряда чаще других исследуется тренд. Именно тренд позволяет делать краткосрочные и долгосрочные прогнозы. Для выявления долговременной тенденции изменения временного ряда обычно строят график, на котором наблюдаемые данные (значения зависимой переменной) откладываются на вертикальной оси, а временные интервалы (значения независимой переменной) - на горизонтальной. В этом разделе мы опишем процедуру выявления линейного, квадратичного и экспоненциального тренда с помощью метода наименьших квадратов.

Модель линейного тренда является простейшей моделью, применяемой для прогнозирования: Y i = β 0 + β 1 X i + ε i . Уравнение линейного тренда:

При заданном уровне значимости α нулевая гипотеза отклоняется, если тестовая t -статистика больше верхнего или меньше нижнего критического уровня t -распределения. Иначе говоря, решающее правило формулируется следующим образом: если t > t U или t < t L , нулевая гипотеза Н 0 отклоняется, в противном случае нулевая гипотеза не отклоняется (рис. 14).

Рис. 14. Области отклонения гипотезы для двустороннего критерия значимости параметра авторегрессии А р , имеющего наивысший порядок

Если нулевая гипотеза (А р = 0) не отклоняется, значит, выбранная модель содержит слишком много параметров. Критерий позволяет отбросить старший член модели и оценить авторегрессионную модель порядка р–1 . Эту процедуру следует продолжать до тех пор, пока нулевая гипотеза Н 0 не будет отклонена.

  1. Выберите порядок р оцениваемой авторегрессионной модели с учетом того, что t -критерий значимости имеет n –2р–1 степеней свободы.
  2. Сформируйте последовательность переменных р «с запаздыванием» так, чтобы первая переменная запаздывала на один временной интервал, вторая - на два и так далее. Последнее значение должно запаздывать на р временных интервалов (см. рис. 15).
  3. Примените Пакет анализа Excel для вычисления регрессионной модели, содержащей все р значений временного ряда с запаздыванием.
  4. Оцените значимость параметра А Р , имеющего наивысший порядок: а) если нулевая гипотеза отклоняется, в авторегрессионную модель можно включать все р параметров; б) если нулевая гипотеза не отклоняется, отбросьте р -ю переменную и повторите п.3 и 4 для новой модели, включающей р–1 параметр. Проверка значимости новой модели основана на t -критерии, количество степеней свободы определяется новым количеством параметров.
  5. Повторяйте п.3 и 4, пока старший член авторегрессионной модели не станет статистически значимым.

Чтобы продемонстрировать авторегрессионное моделирование, вернемся к анализу временного ряда реальных доходов компании Wm. Wrigley Jr. На рис. 15 показаны данные, необходимые для построения авторегрессионных моделей первого, второго и третьего порядка. Для построения модели третьего порядка необходимы все столбцы этой таблицы. При построении авторегрессионной модели второго порядка последний столбец игнорируется. При построении авторегрессионной модели первого порядка игнорируются два последних столбца. Таким образом, при построении авторегрессионных моделей первого, второго и третьего порядка из 20 переменных исключаются одна, две и три соответственно.

Выбор наиболее точной авторегрессионной модели начинается с модели третьего порядка. Для корректной работы Пакета анализа следует в качестве входного интервала Y указать диапазон В5:В21, а входного интервала для Х – С5:Е21. Данные анализа приведены на рис. 16.

Проверим значимость параметра А 3 , имеющего наивысший порядок. Его оценка а 3 равна –0,006 (ячейка С20 на рис. 16), а стандартная ошибка равна 0,326 (ячейка D20). Для проверки гипотез Н 0: А 3 = 0 и Н 1: А 3 ≠ 0 вычислим t -статистику:

t -критерия с n–2p–1 = 20–2*3–1 = 13 степенями свободы равны: t L =СТЬЮДЕНТ.ОБР(0,025;13) = ­–2,160; t U =СТЬЮДЕНТ.ОБР(0,975;13) = +2,160. Поскольку –2,160 < t = –0,019 < +2,160 и р = 0,985 > α = 0,05, нулевую гипотезу Н 0 отклонять нельзя. Таким образом, параметр третьего порядка не имеет статистической значимости в авторегрессионной модели и должен быть удален.

Повторим анализ для авторегрессионной модели второго порядка (рис. 17). Оценка параметра, имеющего наивысший порядок, а 2 = –0,205, а ее стандартная ошибка равна 0,276. Для проверки гипотез Н 0: А 2 = 0 и Н 1: А 2 ≠ 0 вычислим t -статистику:

При уровне значимости α = 0,05, критические величины двухстороннего t -критерия с n–2p–1 = 20–2*2–1 = 15 степенями свободы равны: t L =СТЬЮДЕНТ.ОБР(0,025;15) = ­–2,131; t U =СТЬЮДЕНТ.ОБР(0,975;15) = +2,131. Поскольку –2,131 < t = –0,744 < –2,131 и р = 0,469 > α = 0,05, нулевую гипотезу Н 0 отклонять нельзя. Таким образом, параметр второго порядка не является статистически значимым, и его следует удалить из модели.

Повторим анализ для авторегрессионной модели первого порядка (рис. 18). Оценка параметра, имеющего наивысший порядок, а 1 = 1,024, а ее стандартная ошибка равна 0,039. Для проверки гипотез Н 0: А 1 = 0 и Н 1: А 1 ≠ 0 вычислим t -статистику:

При уровне значимости α = 0,05, критические величины двухстороннего t -критерия с n–2p–1 = 20–2*1–1 = 17 степенями свободы равны: t L =СТЬЮДЕНТ.ОБР(0,025;17) = ­–2,110; t U =СТЬЮДЕНТ.ОБР(0,975;17) = +2,110. Поскольку –2,110 < t = 26,393 < –2,110 и р = 0,000 < α = 0,05, нулевую гипотезу Н 0 следует отклонить. Таким образом, параметр первого порядка является статистически значимым, и его нельзя удалять из модели. Итак, модель авторегрессии первого порядка лучше других аппроксимирует исходные данные. Используя оценки а 0 = 18,261, а 1 = 1,024 и значение временного ряда за последний год - Y 20 = 1 371,88, можно предсказать величину реальных доходов компании Wm. Wrigley Jr. Company в 2002 г.:

Выбор адекватной модели прогнозирования

Выше были описаны шесть методов прогнозирования значений временного ряда: модели линейного, квадратичного и экспоненциального трендов и авторегрессионные модели первого, второго и третьего порядков. Существует ли оптимальная модель? Какую из шести описанных моделей следует применять для прогнозирования значения временного ряда? Ниже перечислены четыре принципа, которыми необходимо руководствоваться при выборе адекватной модели прогнозирования. Эти принципы основаны на оценках точности моделей. При этом предполагается, что значения временного ряда можно предсказать, изучая его предыдущие значения.

Принципы выбора моделей для прогнозирования:

  • Выполните анализ остатков.
  • Оцените величину остаточной ошибки с помощью квадратов разностей.
  • Оцените величину остаточной ошибки с помощью абсолютных разностей.
  • Руководствуйтесь принципом экономии.

Анализ остатков. Напомним, что остатком называется разность между предсказанным и наблюдаемым значением. Построив модель для временного ряда, следует вычислить остатки для каждого из n интервалов. Как показано на рис. 19, панель А, если модель является адекватной, остатки представляют собой случайный компонент временного ряда и, следовательно, распределены нерегулярно. С другой стороны, как показано на остальных панелях, если модель не адекватна, остатки могут иметь систематическую зависимость, не учитывающую либо тренд (панель Б), либо циклический (панель В), либо сезонный компонент (панель Г).

Рис. 19. Анализ остатков

Измерение абсолютной и среднеквадратичной остаточных погрешностей. Если анализ остатков не позволяет определить единственную адекватную модель, можно воспользоваться другими методами, основанными на оценке величины остаточной погрешности. К сожалению, статистики не пришли к консенсусу относительно наилучшей оценки остаточных погрешностей моделей, применяемых для прогнозирования. Исходя из принципа наименьших квадратов, можно сначала провести регрессионный анализ и вычислить стандартную ошибку оценки S XY . При анализе конкретной модели эта величина представляет собой сумму квадратов разностей между фактическим и предсказанным значениями временного ряда. Если модель идеально аппроксимирует значения временного ряда в предыдущие моменты времени, стандартная ошибка оценки равна нулю. С другой стороны, если модель плохо аппроксимирует значения временного ряда в предыдущие моменты времени, стандартная ошибка оценки велика. Таким образом, анализируя адекватность нескольких моделей, можно выбрать модель, имеющую минимальную стандартную ошибку оценки S XY .

Основным недостатком такого подхода является преувеличение ошибок при прогнозировании отдельных значений. Иначе говоря, любая большая разность между величинами Y i и Ŷ i при вычислении суммы квадратов ошибок SSE возводится в квадрат, т.е. увеличивается. По этой причине многие статистики предпочитают применять для оценки адекватности модели прогнозирования среднее абсолютное отклонение (mean absolute deviation - MAD):

При анализе конкретных моделей величина MAD представляет собой среднее значение модулей разностей между фактическим и предсказанными значениями временного ряда. Если модель идеально аппроксимирует значения временного ряда в предыдущие моменты времени, среднее абсолютное отклонение равно нулю. С другой стороны, если модель плохо аппроксимирует такие значения временного ряда, среднее абсолютное отклонение велико. Таким образом, анализируя адекватность нескольких моделей, можно выбрать модель, имеющую минимальное среднее абсолютное отклонение.

Принцип экономии. Если анализ стандартных ошибок оценок и средних абсолютных отклонений не позволяет определить оптимальную модель, можно воспользоваться четвертым методом, основанным на принципе экономии. Этот принцип утверждает, что из нескольких равноправных моделей следует выбирать простейшую.

Среди шести рассмотренных в главе моделей прогнозирования наиболее простыми являются линейная и квадратичная регрессионные модели, а также авторегрессионная модель первого порядка. Остальные модели намного сложнее.

Сравнение четырех методов прогнозирования. Для иллюстрации процесса выбора оптимальной модели вернемся к временному ряду, состоящему из величин реального дохода компании Wm. Wrigley Jr. Company. Сравним четыре модели: линейную, квадратичную, экспоненциальную и авторегрессионную модель первого порядка. (Авторегрессионные модели второго и третьего порядка лишь незначительно улучшают точность прогнозирования значений данного временного ряда, поэтому их можно не рассматривать.) На рис. 20 показаны графики остатков, построенные при анализе четырех методов прогнозирования с помощью Пакета анализа Excel. Делая выводы на основе этих графиков, следует быть осторожным, поскольку временной ряд содержит только 20 точек. Методы построения см. соответствующий лист Excel-файла.

Рис. 20. Графики остатков, построенные при анализе четырех методов прогнозирования с помощью Пакета анализа Excel

Ни одна модель, кроме авторегрессионой модели первого порядка, не учитывает циклический компонент. Именно эта модель лучше других аппроксимирует наблюдения и характеризуется наименее систематической структурой. Итак, анализ остатков всех четырех методов показал, что наилучшей является авторегрессионная модель первого порядка, а линейная, квадратичная и экспоненциальная модели имеют меньшую точность. Чтобы убедиться в этом, сравним величины остаточных погрешностей этих методов (рис. 21). С методикой расчетов можно ознакомиться, открыв Excel-файл. На рис. 21 указаны фактические значения Y i (колонка Реальный доход ), предсказанные значения Ŷ i , а также остатки е i для каждой из четырех моделей. Кроме того, показаны значения S YX и MAD . Для всех четырех моделей величинs S YX и MAD примерно одинаковые. Экспоненциальная модель является относительно худшей, а линейная и квадратичная модели превосходят ее по точности. Как и ожидалось, наименьшие величины S YX и MAD имеет авторегрессионная модель первого порядка.

Рис. 21. Сравнение четырех методов прогнозирования с помощью показателей S YX и MAD

Выбрав конкретную модель прогнозирования, необходимо внимательно следить за дальнейшими изменениями временного ряда. Помимо всего прочего, такая модель создается, чтобы правильно предсказывать значения временного ряда в будущем. К сожалению, такие модели прогнозирования плохо учитывают изменения в структуре временного ряда. Совершенно необходимо сравнивать не только остаточную погрешность, но и точность прогнозирования будущих значений временного ряда, полученную с помощью других моделей. Измерив новую величину Y i в наблюдаемом интервале времени, ее необходимо тотчас же сравнить с предсказанным значением. Если разница слишком велика, модель прогнозирования следует пересмотреть.

Прогнозирование временны х рядов на основе сезонных данных

До сих пор мы изучали временные ряды, состоящие из годовых данных. Однако многие временные ряды состоят из величин, измеряемых ежеквартально, ежемесячно, еженедельно, ежедневно и даже ежечасно. Как показано на рис. 2, если данные измеряются ежемесячно или ежеквартально, следует учитывать сезонный компонент. В этом разделе мы рассмотрим методы, позволяющие прогнозировать значения таких временных рядов.

В сценарии, описанном в начале главы, упоминалась компания Wal-Mart Stores, Inc. Рыночная капитализация компании 229 млрд. долл. Ее акции котируются на Нью-Йоркской фондовой бирже под аббревиатурой WMT. Финансовый год компании заканчивается 31 января, поэтому в четвертый квартал 2002 года включаются ноябрь и декабрь 2001 года, а также январь 2002 года. Временной ряд квартальных доходов компании приведен на рис. 22.

Рис. 22. Квартальные доходы компании Wal-Mart Stores, Inc. (млн. долл.)

Для таких квартальных рядов, как этот, классическая мультипликативная модель, кроме тренда, циклического и случайного компонента, содержит сезонный компонент: Y i = T i * S i * C i * I i

Прогнозирование месячных и временны х рядов с помощью метода наименьших квадратов. Регрессионная модель, включающая сезонный компонент, основана на комбинированном подходе. Для вычисления тренда применяется метод наименьших квадратов, описанный ранее, а для учета сезонного компонента - категорийная переменная (подробнее см. раздел Регрессионные модели с фиктивной переменной и эффекты взаимодействия ). Для аппроксимации временных рядов с учетом сезонных компонентов используется экспоненциальная модель. В модели, аппроксимирующей квартальный временной ряд, для учета четырех кварталов нам понадобились три фиктивные переменные Q 1 , Q 2 и Q 3 , а в модели для месячного временного ряда 12 месяцев представляются с помощью 11 фиктивных переменных. Поскольку в этих моделях в качестве отклика используется переменная logY i , а не Y i , для вычисления настоящих регрессионных коэффициентов необходимо выполнить обратное преобразование.

Чтобы проиллюстрировать процесс построения модели, аппроксимирующей квартальный временной ряд, вернемся к доходам компании Wal-Mart. Параметры экспоненциальной модели, полученные с помощью Пакета анализа Excel, показаны на рис. 23.

Рис. 23. Регрессионный анализ квартальных доходов компании Wal-Mart Stores, Inc.

Видно, что экспоненциальная модель довольно хорошо аппроксимирует исходные данные. Коэффициент смешанной корреляции r 2 равен 99,4% (ячейки J5), скорректированный коэффициент смешанной корреляции - 99,3% (ячейки J6), тестовая F -статистика - 1 333,51 (ячейки M12), а р -значение равно 0,0000. При уровне значимости α = 0,05, каждый регрессионный коэффициент в классической мультипликативной модели временного ряда является статистически значимым. Применяя к ним операцию потенцирования, получаем следующие параметры:

Коэффициенты интерпретируются следующим образом.

Используя регрессионные коэффициенты b i , можно предсказать доход, полученный компанией в конкретном квартале. Например, предскажем доход компании для четвертого квартала 2002 года (X i = 35):

log = b 0 + b 1 Х i = 4,265 + 0,016*35 = 4,825

= 10 4,825 = 66 834

Таким образом, согласно прогнозу в четвертом квартале 2002 года компания должна была получить доход, равный 67 млрд. долл. (вряд ли следует делать прогноз с точностью до миллиона). Для того чтобы распространить прогноз на период времени, находящийся за пределами временного ряда, например, на первый квартал 2003 года (X i = 36, Q 1 = 1), необходимо выполнить следующие вычисления:

logŶ i = b 0 + b 1 Х i + b 2 Q 1 = 4,265 + 0,016*36 – 0,093*1 = 4,748

10 4,748 = 55 976

Индексы

Индексы используются в качестве индикаторов, реагирующих на изменения экономической ситуации или деловой активности. Существуют многочисленные разновидности индексов, в частности, индексы цен, количественные индексы, ценностные индексы и социологические индексы. В данном разделе мы рассмотрим лишь индекс цен. Индекс - величина некоторого экономического показателя (или группы показателей) в конкретный момент времени, выраженный в процентах от его значения в базовый момент времени.

Индекс цен. Простой индекс цен отражает процентное изменение цены товара (или группы товаров) в течение заданного периода времени по сравнению с ценой этого товара (или группы товаров) в конкретный момент времени в прошлом. При вычислении индекса цен прежде всего следует выбрать базовый промежуток времени - интервал времени в прошлом, с которым будут производиться сравнения. При выборе базового промежутка времени для конкретного индекса периоды экономической стабильности являются более предпочтительными по сравнению с периодами экономического подъема или спада. Кроме того, базовый промежуток не должен быть слишком удаленным во времени, чтобы на результаты сравнения не слишком сильно влияли изменения технологии и привычек потребителей. Индекс цен вычисляется по формуле:

где I i - индекс цен в i -м году, Р i - цена в i -м году, Р баз - цена в базовом году.

Индекс цен - процентное изменение цены товара (или группы товаров) в заданный период времени по отношению к цене товара в базовый момент времени. В качестве примера рассмотрим индекс цен на неэтилированный бензин в США в промежутке времени с 1980 по 2002 г. (рис. 24). Например:

Рис. 24. Цена галлона неэтилированного бензина и простой индекс цен в США с 1980 по 2002 г. (базовые годы - 1980 и 1995)

Итак, в 2002 г. цена неэтилированного бензина в США была на 4,8% больше, чем в 1980 г. Анализ рис. 24 показывает, что индекс цен в 1981 и 1982 гг. был больше индекса цен в 1980 г., а затем вплоть до 2000 года не превышал базового уровня. Поскольку в качестве базового периода выбран 1980 г., вероятно, имеет смысл выбрать более близкий год, например, 1995 г. Формула для пересчета индекса по отношению к новому базовому промежутку времени:

где I новый - новый индекс цен, I старый - старый индекс цен, I новая база – значение индекса цен в новом базовом году при расчете для старого базового года.

Предположим, что в качестве новой базы выбран 1995 год. Используя формулу (10), получаем новый индекс цен для 2002 года:

Итак, в 2002 г. неэтилированный бензин в США стоил на 13,9% больше, чем в 1995 г.

Невзвешенные составные индексы цен. Несмотря на то что индекс цен на любой отдельный товар представляет несомненный интерес, более важным является индекс цен на группу товаров, позволяющий оценить стоимость и уровень жизни большого количества потребителей. Невзвешенный составной индекс цен, определенный формулой (11), приписывает каждому отдельному виду товаров одинаковый вес. Составной индекс цен отражает процентное изменение цены группы товаров (часто называемой потребительской корзиной) в заданный период времени по отношению к цене этой группы товаров в базовый момент времени.

где t i - номер товара (1, 2, …, n ), n - количество товаров в рассматриваемой группе, - сумма цен на каждый из n товаров в период времени t , - сумма цен на каждый из n товаров в нулевой период времени, - величина невзвешенного составного индекса в период времени t .

На рис. 25 представлены средние цены на три вида фруктов за период с 1980 по 1999 гг. Для вычисления невзвешенного составного индекса цен в разные годы применяется формула (11), считая базовым 1980 год.

Итак, в 1999 г. суммарная цена фунта яблок, фунта бананов и фунта апельсинов на 59,4% превышала суммарную цену на эти фрукты в 1980 г.

Рис. 25. Цены (в долл.) на три вида фруктов и невзвешенный составной индекс цен

Невзвешенный составной индекс цен выражает изменения цен на всю группу товаров с течением времени. Несмотря на то что этот индекс легко вычислять, у него есть два явных недостатка. Во-первых, при вычислении этого индекса все виды товаров считаются одинаково важными, поэтому дорогие товары приобретают излишнее влияние на индекс. Во-вторых, не все товары потребляются одинаково интенсивно, поэтому изменения цен на мало потребляемые товары слишком сильно влияют на невзвешенный индекс.

Взвешенные составные индексы цен. Из-за недостатков невзвешенных индексов цен более предпочтительными являются взвешенные индексы цен, учитывающие различия цен и уровней потребления товаров, образующих потребительскую корзину. Существуют два типа взвешенных составных индексов цен. Индекс цен Лапейрэ , определенный формулой (12), использует уровни потребления в базовом году. Взвешенный составной индекс цен позволяет учесть уровни потребления товаров, образующих потребительскую корзину, присваивая каждому товару определенный вес.

где t - период времени (0, 1, 2, …), i - номер товара (1, 2, …, n ), n i в нулевой период времени, - значение индекса Лапейрэ в период времени t .

Вычисления индекса Лапейрэ показаны на рис. 26; в качестве базового используется 1980 год.

Рис. 26. Цены (в долл.), количество (потребление в фунтах на душу населения) трех видов фруктов и индекс Лапейрэ

Итак, индекс Лапейрэ в 1999 г. равен 154,2. Это свидетельствует от том, что в 1999 году эти три вида фруктов были на 54,2% дороже, чем в 1980 году. Обратите внимание на то, что этот индекс меньше невзвешенного индекса, равного 159,4, поскольку цены на апельсины - фрукты, потребляемые меньше остальных, - выросли больше, чем цена яблок и бананов. Иначе говоря, поскольку цены на фрукты, потребляемые наиболее интенсивно, выросли меньше, чем цены на апельсины, индекс Лапейрэ меньше невзвешенного составного индекса.

Индекс цен Пааше использует уровни потребления товара в текущем, а не базовом периоде времени. Следовательно, индекс Пааше более точно отражает полную стоимость потребления товаров в заданный момент времени. Однако этот индекс имеет два существенных недостатка. Во-первых, как правило, текущие уровни потребления трудно определить. По этой причине многие популярные индексы используют индекс Лапейрэ, а не индекс Пааше. Во-вторых, если цена некоторого конкретного товара, входящего в потребительскую корзину, резко возрастает, покупатели снижают уровень его потребления по необходимости, а не вследствие изменения вкусов. Индекс Пааше вычисляется по формуле:

где t - период времени (0, 1, 2, …), i - номер товара (1, 2, …, n ), n - количество товаров в рассматриваемой группе, - количество единиц товара i в нулевой период времени, - значение индекса Пааше в период времени t .

Вычисления индекса Пааше показаны на рис. 27; в качестве базового используется 1980 год.

Рис. 27. Цены (в долл.), количество (потребление в фунтах на душу населения) трех видов фруктов и индекс Пааше

Итак, индекс Пааше в 1999 г. равен 147,0. Это свидетельствует от том, что в 1999 году эти три вида фруктов были на 47,0% дороже, чем в 1980 году.

Некоторые популярные индексы цен. В бизнесе и экономике используется несколько индексов цен. Наиболее популярным является индекс потребительских цен (Consumer Index Price - CPI). Официально этот индекс называется CPI-U, чтобы подчеркнуть, что он вычисляется для городов (urban), хотя, как правило, его называют просто CPI. Этот индекс ежемесячно публикуется Бюро статистики труда (U. S. Bureau of Labor Statistics) в качестве основного инструмента для измерения стоимости жизни в США. Индекс потребительских цен является составным и взвешенным по методу Лапейрэ. При его вычислении используются цены 400 наиболее широко потребляемых продуктов, видов одежды, транспортных, медицинских и коммунальных услуг. В данный момент при вычислении этого индекса в качестве базового используется период 1982–1984 гг. (рис. 28). Важной функцией индекса CPI является его использование в качестве дефлятора. Индекс CPI используется для пересчета фактических цен в реальные путем умножения каждой цены на коэффициент 100/CPI. Расчеты показывают, что за последние 30 лет среднегодовые темпы инфляции в США составили 2,9%.

Рис. 28. Динамика Consumer Index Price; полные данные см. Excel-файл

Другим важным индексом цен, публикуемым Бюро статистики труда, является индекс цен производителей (Producer Price Index - PPI). Индекс PPI является взвешенным составным индексом, использующим метод Лапейрэ для оценки изменения цен товаров, продаваемых их производителями. Индекс PPI является лидирующим индикатором для индекса CPI. Иначе говоря, увеличение индекса PPI приводит к увеличению индекса CPI, и наоборот, уменьшение индекса PPI приводит к уменьшению индекса CPI. Финансовые индексы, такие как индекс Доу-Джонса для акций промышленных предприятий (Dow Jones Industrial Average - DJIA), S&P 500 и NASDAQ, используются для оценки изменения стоимости акций в США. Многие индексы позволяют оценить прибыльность международных фондовых рынков. К таким индексам относятся индекс Nikkei в Японии, Dax 30 в Германии и SSE Composite в Китае.

Ловушки, связанные с анализом временны х рядов

Значение методологии, использующей информацию о прошлом и настоящем для того, чтобы прогнозировать будущее, более двухсот лет назад красноречиво описал государственный деятель Патрик Генри: «У меня есть лишь одна лампа, освещающая путь, - мой опыт. Только знание прошлого позволяет судить о будущем».

Анализ временных рядов основан на предположении, что факторы, влиявшие на деловую активность в прошлом и влияющие в настоящем, будут действовать и в будущем. Если это правда, анализ временных рядов представляет собой эффективное средство прогнозирования и управления. Однако критики классических методов, основанных на анализе временных рядов, утверждают, что эти методы слишком наивны и примитивны. Иначе говоря, математическая модель, учитывающая факторы, действовавшие в прошлом, не должна механически экстраполировать тренды в будущее без учета экспертных оценок, опыта деловой активности, изменения технологии, а также привычек и потребностей людей. Пытаясь исправить это положение, в последние годы специалисты по эконометрии разрабатывали сложные компьютерные модели экономической активности, учитывающие перечисленные выше факторы.

Тем не менее, методы анализа временных рядов представляют собой превосходный инструмент прогнозирования (как краткосрочного, так и долгосрочного), если они применяются правильно, в сочетании с другими методами прогнозирования, а также с учетом экспертных оценок и опыта.

Резюме. В заметке с помощью анализа временных рядов разработаны модели для прогнозирования доходов трех компаний: Wm. Wrigley Jr. Company, Cabot Corporation и Wal-Mart. Описаны компоненты временного ряда, а также несколько подходов к прогнозированию годовых временных рядов - метод скользящих средних, метод экспоненциального сглаживания, линейная, квадратичная и экспоненциальная модели, а также авторегрессионная модель. Рассмотрена регрессионная модель, содержащая фиктивные переменные, соответствующие сезонному компоненту. Показано применение метода наименьших квадратов для прогнозирования месячных и квартальных временных рядов (рис. 29).

Р степеней свободы утрачиваются при сравнении значений временного ряда.

Лекция 4. ОСНОВНЫЕ ТИПЫ ТЕНДЕНЦИЙ И УРАВНЕНИЙ ТРЕНДА

В главе 2 было рассмотрено понятие о тенденции временного ряда, т.е. тенденции динамики развития изучаемого показате-ля. Задача данной главы состоит в том, чтобы рассмотреть ос-новные типы таких тенденций, их свойства, отражаемые с большей или меньшей степенью полноты уравнением линии тренда. Укажем при этом, что в отличие от простых систем ме-ханики тенденции изменения показателей сложных социальных, экономических, биологических и технических систем только с некоторым приближением отражаются тем или иным уравне-нием, линией тренда.

В данной главе рассматриваются далеко не все известные в математике линии и их уравнения, а лишь набор их сравнитель-но простых форм, который мы считаем достаточным для ото-бражения и анализа большинства встречающихся на практике тенденций временных рядов. При этом желательно всегда вы-бирать из нескольких типов линий, достаточно близко выра-жающих тенденцию, более простую линию. Этот «принцип простоты» обоснован тем, что чем сложнее уравнение линии тренда, чем большее число параметров оно содержит, тем при равной степени приближения труднее дать надежную оценку этих параметров по ограниченному числу уровней ряда и тем больше ошибка оценки этих параметров, ошибки прогнозиру-емых уровней.

4.1. Прямолинейный тренд и его свойства

Самым простым типом линии тренда является прямая ли-ния, описываемая линейным (т.е. первой степени) уравнением тренда:

Где - выровненные, т.е. лишенные колебаний, уровни тренда для лет с номером i;

а - свободный член уравнения, численно равный среднему выровненному уровню для момента или периода времени, принятого за начало отсчета, т.е. для

t = 0;

b - средняя величина изменения уровней ряда за единицу из-менения времени;

ti - номера моментов или периодов времени, к которым от-носятся уровни временного ряда (год, квартал, месяц, дата).

Среднее изменение уровней ряда за единицу времени - глав-ный параметр и константа прямолинейного тренда. Следова-тельно, этот тип тренда подходит для отображения тенденции примерно равномерных изменений уровней: равных в среднем абсолютных приростов или абсолютных сокращений уровней за равные промежутки времени. Практика показывает, что та-кой характер динамики встречается достаточно часто. Причи-на близких к равномерному абсолютных изменений уровней ряда состоит в следующем: многие явления, как, например, урожай-ность сельскохозяйственных культур, численность населения региона, города, сумма дохода населения, среднее потребление какого-либо продовольственного товара и др., зависят от боль-шого числа различных факторов. Одни из них влияют в сторо-ну ускоренного роста изучаемого явления, другие - в сторону замедленного роста, третьи - в направлении сокращения уров-ней и т.д. Влияние разнонаправленных и разноускоренных (за-медленных) сил факторов взаимно усредняется, частично взаимно погашается, а равнодействующая их влияний приобре-тает характер, близкий к равномерной тенденции. Итак, равно-мерная тенденция динамики (или застоя) - это результат сложения влияния большого количества факторов на изменение изучаемого показателя.

Графическое изображение прямолинейного тренда - прямая линия в системе прямоугольных координат с линейным (ариф-метическим) масштабом на обеих осях. Пример линейного тренда дан на рис. 4.1.

Абсолютные изменения уровней в разные годы не были точно одинаковыми, но общая тенденция сокращения численности занятых в народном хозяйстве очень хорошо отражает-ся прямолинейным трендом. Его параметры вычислены в гл. 5 (табл. 5.3).

Основные свойства тренда в форме прямой линии таковы:

Равные изменения за равные промежутки времени;

Если средний абсолютный прирост - положительная вели-чина, то относительные приросты или темпы прироста посте-пенно уменьшаются;

Если среднее абсолютное изменение - отрицательная вели-чина, то относительные изменения или темпы сокращения по-степенно увеличиваются по абсолютной величине снижения к предыдущему уровню;

Если тенденция к сокращению уровней, а изучаемая вели-чина является по определению положительной, то среднее изме-нение b не может быть больше среднего уровня а;

При линейном тренде ускорение, т.е. разность абсолютных изменений за последовательные периоды, равно нулю.

Свойства линейного тренда иллюстрирует табл. 4.1. Урав-нение тренда: = 100 +20 *ti.

Показатели динамики при наличии тенденции сокращения уровней приведены в табл. 4.2.

Таблица 4.1

Показатели динамики при линейном тренде к увеличению уровней = 100 +20 *ti.


Номер периода ti

Уровень



Темпы (цеп-ные), %

Ускоре-ние

1

120

+20

120,0

-

2

140

+20

116,7

0

3

160

+20

114,3

0

4

180

+20

112,5

0

5

200

+20

111,1

0

6

220

+20

110,0

0

Таблица 4.2

Показатели динамики при линейном тренде сокращения уровней: = 200 -20 *ti.


Номер периода ti

Уровень

Абсолютное изме-нение к предыду-щему периоду

Темп к предыдущему периоду, %

Ускоре-ние

1

180

-20

90,0

-

2

160

-20

88,9

0

3

140

-20

87,5

0

4

120

-20

85,7

0

5

100

-20

83,3

0

6

80

-20

80,0

0

^ 4.2. Параболический тренд и его свойства

Под названием параболического будем иметь в виду тренд, выраженный параболой II порядка с уравнением

=a+b*t+c*t 2 .

Параболы III порядка и более высоких порядков редко приме-нимы для выражения тенденции динамики и слишком сложны для получения надежных оценок параметров при ограничен-ной длине временного ряда. Прямую линию, с точки зрения ма-тематики, можно также считать одним из видов парабол - параболой I порядка, которая уже рассмотрена ранее.

Значения (смысл, сущность) параметров параболы II поряд-ка таковы: свободный член а - это средний (выровненный) уро-вень тренда на момент или период, принятый за начало отсчета времени, т.е. t = 0; b - это средний за весь период среднегодовой прирост, который уже не является константой, а изменяется рав-номерно со средним ускорением, равным 2 с, которое и служит константой, главным параметром параболы II порядка.

Следовательно, тренд в форме параболы II порядка при-меняется для отображения таких тенденций динамики, кото-рым свойственно примерно постоянное ускорение абсолютных изменений уровней. Процессы такого рода встречаются на практике гораздо реже, чем процессы с равномерным измене-нием, но, с другой стороны, любое отклонение процесса от строго равномерного прироста (или сокращения) уровней можно интерпретировать как наличие ускорения. Более того, существует строгое математическое правило: чем выше поря-док параболы, тем ближе линия тренда к уровням исходного временного ряда. Если это правило довести до крайнего пре-дела, то любой ряд из п уровней может быть точно отображен параболой (п -1)-го порядка! (Через любые две точки прохо-дит одна прямая, через три точки - одна парабола II порядка и т.д.) Такое «приближение» линии тренда к эмпирическому ряду, содержащему как тенденцию, так и колебания, нельзя считать достижением научного анализа. Напротив, применяя параболу более высокого порядка там, где сущность процес-са этого не требует, а только ради уменьшения остаточной суммы отклонений (или их квадратов) отдельных уровней от тренда, исследователь уходит от цели, смешивая тренд с коле-баниями.

ПараболаII порядка, как уравнение тренда, применяется к различным процессам, которые на некотором, как правило не-продолжительном, этапе развития имеют примерно постоян-ное ускорение абсолютного прироста уровней. Такими бывают рост населения отдельных городов или регионов, ускоренное увеличение объема продукции в фазе циклического подъема, как, например, динамика экспорта Японии в 1988-1995 гг. на рис. 4.2.

Рис. 4.2. Динамика экспорта Японии

Расчет уравнения этой параболы приведен в гл. 5. Основные свойства тренда в форме параболы II порядка та-ковы:

1) неравные, но равномерно возрастающие или равномерно убывающие абсолютные изменения за равные промежутки вре-мени;

2) парабола, рассматриваемая относительно ее математи-ческой формы, имеет две ветви: восходящую с увеличением уровней признака и нисходящую с их уменьшением. Но отно-сительно статистики по содержанию изучаемого процесса из-менений трендом, выражающим определенную тенденцию развития, чаще всего можно считать только одну из ветвей:

Либо восходящую, либо нисходящую. В особых, более конк-ретных, ситуациях мы не отрицаем возможности объединения обеих ветвей в единый тренд;

3) так как свободный член уравнения а как значение показа-теля в начальный момент (период) отсчета времени, как правило, величина положительная, то характер тренда определяется знаками параметров b и с:

А) при b >0 и с>0 имеем восходящую ветвь, т.е. тенденцию к ускоренному росту уровней;

Б) при b <0 и с<0 имеем нисходящую ветвь - тенденцию к ускоренному сокращению уровней;

В) при b > 0 и с<0 имеем либо восходящую ветвь с замедляю-щимся ростом уровней, либо обе ветви параболы, восходящую и нисходящую, если их по существу можно считать единым про-цессом;

Г) при b <0 и с>0 имеем либо нисходящую ветвь с замедляю-щимся сокращением уровней, либо обе ветви - нисходящую и восходящую, если их можно считать единой тенденцией;

4) при параболической форме тренда, в зависимости от со-отношений между его параметрами, цепные темпы изменений могут либо уменьшаться, либо некоторое время возрастать, но при достаточно длительном периоде рано или поздно темпы роста обязательно начинают уменьшаться, а темпы сокращения уровней при b <0 и с<0 обязательно начинают возрастать (по абсолютной величине относительного изменения).

Ввиду ограниченного объема учебника рассмотрим не все четыре случая параболических трендов, а лишь два первых (табл. 4.3 и 4.4).

Таблица 4.3

Показатели динамики при параболическом тренде,


Номер периода ti

Уровень

Абсолютное изменение



Ускоре-ние

1

122

+22

122,0

-

2

148

+26

121,3

+4

3

178

+30

120,3

+4

4

212

+34

119,1

+4

5

250

+38

117,9

+4

6

292

+42

116,8

+4

^ Таблица 4.4

Показатели динамики при параболическомтренде,


Номер перио-да

Уро-вень

Абсо-лютные

измене-ния


Цепные темпы, % к предыдущему периоду

Уско-рение

Цепное относи-тельное измене-ние, % к преды-дущему периоду

1

178

-22

89,0

-

-11,0

2

152

-26

85,4

-4

-14,6

3

122

-30

80,3

-4

-19,7

4

88

-34

72,1

-4

-27,9

5

50

-38

56,8

-4

-43,2

6

8

-42

16,0

-4

-84,0

В тех случаях, когда по существу изучаемого процесса до-пустимо считать единым трендом обе ветви параболы, пред-ставляет большой интерес решение задачи о нахождении того периода или момента времени, когда уровень тренда достигает максимума (когда b >0, с<0) или минимума (если b <0, с>0). Эк-стремальная точка параболы = а + bt + ct 2 достигается при ну-левом значении первой производной:

^ 4.3. Экспоненциальный тренд и его свойства

Экспоненциальным трендом называют тренд, выраженный уравнением: . Свобод-ный член экспоненты а равен выровненному уровню, т.е. уров-ню тренда в момент или период, принятый за начало отсчета времени, т.е. при t = 0. Основной параметр экспоненциального тренда k является постоянным темпом изменения уровней (цен-ным). Если k > 1, имеем тренд с возрастающими уровнями, при-чем это возрастание не просто ускоренное, а с возрастающим ускорением и возрастающими производными всех более высо-ких порядков. Если k < 1, то имеем тренд, выражающий тенден-цию постоянного, но замедляющегося сокращения уровней, причем замедление непрерывно усиливается. Экстремума экс-понента не имеет и при
стремится либо к
при k > 1, либо к 0 при k < 1.

Экспоненциальный тренд характерен для процессов, разви-вающихся в среде, не создающей никаких ограничений для рос-та уровня. Из этого следует, что на практике он может развиваться только на ограниченном промежутке времени, так как любая среда рано или поздно создает ограничения, любые ресурсы со временем исчерпаемы. Однако практика показала что, например, численность населения Земли на протяжении 1950-1985 гг. возрастала примерно по экспоненте со среднего-довым темпом роста k = 1,018 и за это время возросла вдвое - с 2,5 до 5 млрд. чел. (рис. 4.3). В настоящее время темп роста насе-ления постепенно уменьшается.

Экспоненциальный рост объема реализации и производства происходит при возникновении новых видов продукции и их освоении промышленностью: при появлении цветных телеви-зоров, видеомагнитофонов, пейджеров и т.п., но когда произ-водство начинает наполнять рынок, приближаться к спросу, экспоненциальный рост прекращается.

Рис. 4.3. Рост народонаселения Земли

Расчет экспоненциального тренда дан в гл. 5. Основные свойства экспоненциального тренда:

1. Абсолютные изменения уровней тренда пропорциональ-ны самим уровням.

2. Экспонента экстремумов не имеет: при k > 1 тренд стремит-ся к +, при k < 1 тренд стремится к нулю.

3. Уровни тренда представляют собой геометрическую про-грессию: уровень периода с номером t = т есть a * k m .

4. При k > 1 тренд отражает ускоряющийся неравномерно рост уровней, при k < 1 тренд отражает замедляющееся неравномерно уменьшение уровней. Поведение основных показателей дина-мики в этих случаях рассмотрено в табл. 4.5 и 4.6.

В табл. 4.5 и 4.6 в последней графе приведены редко приме-няемые показатели динамики III порядка: ускорение (или при-рост) ускорения и замедление ускорения. Эти абсолютные показатели даны для наглядного пояснения главного отличия экспоненциального тренда от парабол любого порядка: экспо-нента не имеет постоянных производных любого порядка по времени. Постоянен только цепной темп изменения.


Номер периода

Уровень

Абсолютные изменения (цепные)

Цепные темпы, % к предыдущему периоду

Ускорение

Прирост ускорения к предыдущему периоду

1

120,00

+20,00

120

-

-

2

144,00

+24,00

120

+4,00

-

3

172,80

+28,80

120

+4,80

+0,80

4

207,36

+34,56

120

+4,76

+0,96

5

248,83

+41,47

120

+6,81

+1,15

6

298,60

+49,77

120

+8,30

+1,39

Номер периода

Уровень

Абсолютные изменения (цепные)

Цепные темпы, % к предыдущему периоду

Ускорение

Замедление ускорения

1

160,00

40,00

80

-

-

2

128,0

-32,00

80

+8,00

-

3

102,40

-25,60

80

+6,40

-1,60

4

81,92

-20,48

80

+5,12

-1,28

5

65,54

-16,38

80

+4,10

-1,02

6

52,43

-13,11

80

+3,27

-0,83

Читатель может заинтересоваться и таким вопросом: как на-звать тенденцию динамики, при которой и темп изменения был бы непостоянен, а имел постоянное абсолютное или относи-тельное изменение, например, уравнение типа или и т.д. Подобные «гиперэкспоненты» не применяют-ся статистикой, ибо любой, сколь угодно быстрый, сколь угодно ускоряющийся рост может быть отображен обычной экспонентой - стоит лишь уменьшить период, за который происходит возрастание (или сокращение) уровней в k раз. По своему суще-ству экспоненциальное развитие процесса и есть предельно воз-можное, предельно благоприятное по условиям развития, так как оно осуществляется в среде, не ограничивающей развитие данного процесса. Но следует помнить, что это происходит толь-ко до определенного времени, так как каждая среда, каждый ре-сурс в природе ограничен. Единственный спорный в науке процесс, по которому до сих пор нет доказательства ограничен-ности его во времени, - это экспоненциальное замедляющееся расширение Вселенной. Ограничено ли оно и сменится ли со временем сжатием или будет продолжаться бесконечно, зави-сит от значения средней плотности вещества и излучения во Вселенной, которую пока науке установить не удалось, ибо не все формы существования вещества и полей науке извест-ны. Зато интересно знать, что самый фундаментальный про-цесс, охватывающий всю известную Вселенную, уже, по крайней мере, 12-15 млрд. лет развивается по экспоненте.

^ 4.4. Гиперболический тренд и его свойства

Из различных форм гипербол рассмотрим только наиболее простую:

Если основной параметр гиперболы b >0, то этот тренд вы-ражает тенденцию замедляющегося снижения уровней и при .. Таким образом, свободный член гиперболы - это предел, к которому стремится уровень тренда.

Такая тенденция наблюдается, например (рис. 4.4), при изу-чении процесса снижения затрат любого ресурса (труда, мате-риалов, энергии) на единицу данного вида продукции или ее себестоимости в целом. Затраты ресурса не могут стремиться к нулю, значит, экспонента не соответствует сущности процесса; нужно применить гиперболическую формулу тренда.

Если параметр b <0, то с возрастанием t , т.е. с течением вре-мени, уровни тренда возрастают и стремятся к величине а при .

Такой характер динамики присущ, например, показателям КПД двигателей или иных преобразователей энергии (трансфор-матор тока, фотоэлемент и т.п.). По мере развития научно-тех-нического прогресса эти КПД постепенно повышаются, но никогда не могут превысить определенного предела для каждо-го типа двигателя и не могут превысить 100% в принципе для любого преобразователя энергии. При расчете гиперболического тренда нельзя нумеровать года от середины ряда, так как значения 1/ti должны быть всегда положительными.

Основные свойства гиперболического тренда:

1. Абсолютный прирост или сокращение уровней, ускоре-ние абсолютных изменений, темп изменения - все эти показате-ли не являются постоянными. При b >0 уровни замедленно уменьшаются, отрицательные абсолютные изменения, а также положительные ускорения тоже уменьшаются, цепные темпы из-менения растут и стремятся к 100%.

Рис. 4.4. Динамика расхода условного топлива на производство электроэнергии (г на 1 кВт-ч) на электростанциях региона

2. При b <0 уровни замедленно возрастают, положительные абсолютные изменения, а также отрицательные ускорения и цеп-ные темпы роста замедленно уменьшаются, стремясь к 100%.

Как видим, гиперболический тренд описывает в любом слу-чае тенденцию такого процесса, показатели которого со време-нем затухают, т.е. происходит переход от движения к застою. Иллюстрацией этих свойств может служить табл. 4.7.

Таблица 4.7

Показатели динамики при гиперболическом тренде:


Номер периода

Уровень

Абсолютные изменения (цепные)

Цепные темпы, % к предыдущему периоду

Ускорение

1

200,0

-

-

-

2

150,0

-50,0

75,0

-

3

133,0

-16,7

88,9

+33,3

4

125,0

-8,3

93,8

+8,4

5

120,0

-5,0

96,0

+3,3

6

116,7

-3,3

97,2

+1,7

^ 4.5. Логарифмический тренд и его свойства

Если изучаемый процесс приводит к замедлению роста ка-кого-то показателя, но при этом рост не прекращается, не стремится к какому-либо ограниченному пределу, то гипербо-лическая форма тренда уже не подходит. Тем более не подходит парабола с отрицательным ускорением, по которой замедляю-щийся рост перейдет со временем в снижение уровней. В указан-ном случае тенденция изменения лучше всего отображается логарифмической формой тренда: = a + b ln .

Логарифмы возрастают значительно медленнее, чем сами числа (номера периодов ), но рост логарифмов неограничен. Подбирая начало отсчета периодов (моментов) времени, мож-но найти такую скорость снижения абсолютных изменений, ко-торая наилучшим образом отвечает фактическому временному ряду.

Примером тенденций, соответствующих логарифмическому тренду, может служить динамика рекордных достижений в спорте: известно, что увеличение на 1 см рекорда прыжка в вы-соту или снижение на 0,1 с времени бега на 200 или 400 м требует все больших и больших затрат времени, каждый рекорд дается все большим и большим трудом. В то же время нет и «вечных» рекордов, все спортивные достижения улучшаются, но медлен-нее и медленнее, т.е. по логарифмическому тренду. Нередко та-кой же характер динамики присущ на отдельных этапах развития динамике урожайности или валового сбора какой-то культуры в данном регионе, пока новое агротехническое достижение не при-даст снова тенденции ускорения, что иллюстрирует рис. 4.5.

Конечно, характер тенденции маскируется колебаниями, но видно, что рост валового сбора замедляется. Это показывают и средние уровни сбора чая:

За 1978-1983 гг. средний сбор равен 333 тыс. т;

За 1984-1989 гг. средний сбор равен 483 тыс. т, рост на 150 тыс.т;

За 1990-1994 гг. средний сбор равен 566 тыс. т, рост на 83 тыс.т.

На рис. 4.5 для убедительности нанесен и логарифмический тренд, расчет

Рис. 4.5. Динамика валового сбора чая в Китае

Которого дан в гл. 5. Заметны также 5-6-летние циклические колебания валового сбора чая.

Основные свойства логарифмического тренда:

1. Если b >0, то уровни возрастают, но с замедлением, а если b <0, то уровни тренда уменьшаются, тоже с замедлением.

2. Абсолютные изменения уровней по модулю всегда умень-шаются со временем.

3. Ускорения абсолютных изменений имеют знак, противо-положный самим абсолютным изменениям, а по модулю посте-пенно уменьшаются.

4. Темпы изменения (цепные) постепенно приближаются к 100% при .

Можно сделать общий вывод о том, что логарифмический тренд отражает, так же как и гиперболический тренд, посте-пенно затухающий процесс изменений. Различие состоит в том, что затухание по гиперболе происходит быстро при приближе-нии к конечному пределу, а при логарифмическом тренде зату-хающий процесс продолжается без ограничения гораздо медленнее.

^ 4.6. Логистический тренд и его свойства

Логистическая форма тренда подходит для описания такого процесса, при котором изучаемый показатель проходит полный цикл развития, начиная, как правило, от нулевого уровня, сна-чала медленно, но с ускорением возрастая, затем ускорение ста-новится нулевым в середине цикла, т.е. рост происходит по линейному тренду, затем, в завершающей части цикла, рост за-медляется по гиперболе по мере приближения к предельному значению показателя.

Примером такого цикла динамики может служить измене-ние доли грамотного населения в стране, например в России, с 1800 г. до наших дней, или изменение доли семей, имеющих те-левизоры, примерно с 1945 до 2000 г. в России, доли жилищ в городах, имеющих горячее водоснабжение или центральное ото-пление (процесс, еще не законченный). В некоторых зарубеж-ных программах для компьютеров логистическая кривая называется S-образной кривой.

Можно, конечно, логистическую тенденцию считать объе-динением трех разных по типу тенденций: параболической с ускоряющимся ростом на первом этапе, линейной - на втором и гиперболической с замедляющимся ростом - на третьем этапе. Но есть доводы и в пользу рассмотрения всего цикла развития как особого единого типа тенденции со сложными, переменными свойствами, но постоянным направлением из-менений в сторону увеличения уровней в рассмотренных нами примерах или уменьшения уровней, если взять противополож-ный процесс - сокращение доли неграмотных среди населе-ния, доли жилищ, не оборудованных газоснабжением или центральным отоплением, и т.д.

Рассмотрение таких временных рядов, как проявление еди-ной логистической тенденции, позволяет уже на первом этапе рассчитать всю траекторию развития, определить сроки пере-хода от ускоренного роста к замедленному, что чрезвычайно важно при планировании производства или реализации нового вида товара, спрос на который будет проходить все этапы логи-стической тенденции вплоть до насыщения рынка. Так, напри-мер, обеспеченность населения в России автомобилями в конце 1980-х годов находилась на начальном этапе логистической кри-вой, и это означало, что предстоит еще ряд лет или даже десяти-летий ускоренного роста спроса. В то же время обеспеченность фотоаппаратами уже достигла этапа замедления роста, и это означало, что расширять производство или импорт прежних типов фотоаппаратов не следует. Расширение их рынка возмож-но было только для принципиально новых типов фотоаппара-тов, насыщенность которыми еще находится в самом начале первого этапа.

В вышеописанном диапазоне изменения уровней, т.е. от нуля до единицы, уравнение логистического тренда имеет вид:

должно быть примерно равно -10. Чем больше , тем быст-рее будут снижаться уровни, например, при = -10; = 1, уже при = 20 уровни снизятся почти до нуля.

Если же диапазон изменения уровней ограничен не нулем и единицей, а любыми значениями, определяемыми исходя из су-щества задачи, обозначаемыми то формула логис-тического тренда принимает вид:

Как видно из табл. 4.8, абсолютные изменения нарастают до середины периода, затем уменьшаются. Все они положитель-ны. Ускорения сначала возрастают, а после середины периода снижаются, становятся отрицательными, но уменьшаются по мо-дулю. Сумма положительных и отрицательных ускорений при-ближенно равна нулю (если ряд продлить от - до +, то сумма их точно равна нулю). Темпы роста возрастают до конца пер-вой половины ряда, затем снижаются. Если ряд достаточно длин-ный, то темпы начинаются со 100 % и завершаются на 100%.

Таблица 4.8

Показатели динамики при логистическом тренде:


Номер периода

Уровень

Абсолютные изме-нения к предыдуще-му периоду

Ускоре-ние

Темп роста к предыдущему периоду, %

0

51,0

-

-

-

1

54,4

+3,4

-

106,7

2

67,9

+13,5

+10,1

124,8

3

106,6

+38,7

+25,2

157,0

4

159,7

+53,1

+14,4

149,8

5

188,6

+28,8

-24,2

118,1

6

197,3

+8,7

-20,2

104,6

7

199,4

+2,1

-6,6

101,1

При логистическом тренде со снижающимися уровнями по-казатели динамики изменяются в следующем порядке: отрица-тельные абсолютные изменения по модулю возрастают до середины ряда и снижаются к концу, стремясь к нулю при . Ускорения в первой половине периода отрицательные и по мо-дулю возрастающие; во второй половине периода ускорения положительные и уменьшающиеся в пределе до нуля. Темпы изменений все меньше 100%, в конце первой половины периода наименьшие, во второй половине возрастающие с замедлением до 100% в пределе. Графическое изображение логистического тренда приведено на рис. 5.2.

Является тренд . Одним из наиболее популярных способов моделирования тенденции временного ряда является нахождение аналитической функции, характеризующей зависимость уровней ряда от времени. Этот способ называется аналитическим выравниванием временного ряда.

Зависимость показателя от времени может принимать разные формы, поэтому находят различные функции: линейную, гиперболу, экспоненту, степенную функцию, полиномы различных степеней. Временной ряд исследуют аналогично линейной регрессии.

Параметры любого тренда можно определить обычным методом наименьших квадратов, используя в качестве фактора время t = 1, 2,…, n, а в качестве зависимой переменной используют уровни временного ряда. Для нелинейных трендов сначала проводят процедуру линеаризации.

К числу наиболее распространенных способов определения типа тенденции относят качественный анализ изучаемого ряда , построение и анализ графика зависимости уровней ряда от времени, расчет основных показателей динамики. В этих же целях можно часто используют и .

Линейный тренд

Тип тенденции определяют путем сравнения коэффициентов автокорреляции первого порядка. Если временной ряд имеет линейный тренд, то его соседние уровни yt и yt-1 тесно коррелируют. В таком случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть максимальный. Если временной ряд содержит нелинейную тенденцию, то чем сильнее выделена нелинейная тенденция во временном ряду, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит , можно осуществить перебором основных видов тренда, расчета по каждому уравнению коэффициента корреляции и выбора уравнения тренда с максимальным значением коэффициента.

Параметры тренда

Наиболее простую интерпретацию имеют параметры экспоненциального и линейного трендов.

Параметры линейного тренда интерпретируют так: а — исходный уровень временного ряда в момент времени t = 0; b - средний за период абсолютный прирост уровней рада.

Параметры экспоненциального тренда имеют такую интерпретацию. Параметр а - это исходный уровень временного ряда в момент времени t = 0. Величина exp(b) - это средний в расчете на единицу времени коэффициент роста уровней ряда.

По аналогии с линейной моделью расчетные значения уровней рада по экспоненциальному тренду можно определить путем подстановки в уравнение тренда значений времени t = 1,2,…, n, либо в соответствии с интерпретацией параметров экспоненциального тренда: каждый последующий уровень такого ряда есть произведение предыдущего уровня на соответствующий коэффициент роста

При наличии неявной нелинейной тенденции нужно дополнять описанные выше методы выбора лучшего уравнения тренда качественным анализом динамики изучаемого показателя, для того, чтобы избежать ошибок спецификации при выборе вида тренда. Качественный анализ предполагает изучение проблем возможного наличия в исследуемом ряду поворотных точек и изменения темпов прироста, начиная с определенного момента времени под влиянием ряда факторов, и т. д. В том случае если уравнение тренда выбрано неправильно при больших значениях t, результаты прогнозирования динамики временного ряда с использованием исследуемого уравнения будут недостоверными по причине ошибки спецификации.

Иллюстрация возможного появления ошибки спецификации приведем на рисунке

Если оптимальной формой тренда является парабола, в то время как на самом деле имеет место линейная тенденция, то при больших t парабола и линейная функция естественно будут по разному описывать тенденцию в уровнях ряда.

  • 6.Статистическая сводка и группировка. Виды группировок.
  • 7.Абсолютные статистические величины: понятия, виды.
  • 8.Относительные статистические величины: понятия, виды.
  • 9.Средние величины: понятия, виды. (степенные, структурные) Средние величины.
  • Степенные средние
  • Структурные средние
  • 10.Средняя арифметическая и средняя гармоническая величины. Средняя арифметическая
  • Средняя гармоническая.
  • 11.Основные свойства средней арифметической.
  • 12.Показатели вариации признака и способы их расчета.
  • Абсолютные и средние показатели вариации и способы их расчета.
  • 13.Экономические индексы: понятия, виды. Индивидуальные индексы цен, физического объема реализации, товарооборота. Понятие индексов
  • Индивидуальные индексы
  • Сводные индексы
  • Индекс цены товарооборота Индекс физического объема товарооборота Проблема выбора весов
  • Цепные и базисные индексы с постоянными и переменными весами
  • Индексы постоянного состава, переменного состава и структурных сдвигов
  • Территориальные индексы
  • 14.Агрегатные индексы цен, физического объема, товарооборота, их взаимосвязь. Агрегатные индексы.
  • 15.Средние арифметический и средние гармонический индексы физического объема продукции. Средние индексы.
  • 16.Выборочное наблюдение, виды выработки (повторная, бесповторная).
  • 17.Средняя и предельная ошибки выборки. Расчет доверительного интервала.
  • 18.Расчет необходимой численности выборки, обеспечивающий с определенной вероятностью заданную точность наблюдения.
  • 19.Ряды динамики: понятия, виды (моментальные, интервальные). Показатели ряда
  • 20.Среднии показатели ряда динамики. Определение среднего уровня ряда динамики.
  • 21.Методы сглаживания рядов динамики.
  • 22.Виды взаимосвязей между явлениями (функциональные, корреляционные). Классификация корреляционных взаимосвязей.
  • 23.Расчет параметров линейного тренда.
  • 24.Линейный коэффициент корреляции.
  • 25.Расчет параметров линейной парной регрессии.
  • 26.Понятие и формирование снс.
  • 27.Система национальных счетов: стандартный набор счетов для секторов экономики.
  • 28.Основные макроэкономические показатели снс.
  • 29.Методы расчета валового внутреннего продукта.
  • 30.Показатели естественного движения населения и методы их расчета.
  • 31.Показатели миграции населения и методы их расчета.
  • 32.Расчет перспективной численности населения.
  • 33.Система показателей уровня жизни. Индекс развития человеческого потенциала.
  • 34.Категория людей, относящимся к занятым. Расчет коэффициента занятости и нагрузке на оного занятого в экономике.
  • 35.Категория людей, относящимся к безработным. Расчет коэффициента безработицы.
  • 36.Статистика численности работников предприятия.
  • 37.Фонды рабочего времени и методы их расчета.
  • 38Коэффициенты использования фондов рабочего времени и методы их расчета.
  • 39.Статистика национального богатства: состав нефинансовых производственных активов.
  • 40.Статистика национального богатства: состав нефинансовых непроизводственных активов.
  • 41.Статистика национального богатства: состав финансовых активов.
  • Структура национального богатства. Элементы национального богатства* (на начало года; без учета стоимости земли, недр и лесов)
  • 42.Статистика международной торговли.
  • 43.Статистика госбюджета.
  • 44.Статистика основных фондов.
  • 45.Статистика оборотных фондов.
  • 46.Статистика производительности труда.
  • 47.Статистика заработной платы.
  • 48.Статистика себестоимости продукции.
  • 49.Расчет индексов, используемых для изучения динамики средних цен, индекса постоянного состава, индекса структурных сдвигов, индекса переменного состава.
  • 50.Агрегатные индексы цен ласпейреса, пааше, фишера, маршалла.
  • Индексы Пааше, Ласпейреса и "идеальный индекс" Фишера
  • 23.Расчет параметров линейного тренда.

    Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.

    Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различ­ных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения ин­тервалов, скользящей средней и аналитического выравнивания.

    *Одним из наиболее простых методов изучения основной тенденции в рядах динамики является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым отно­сятся уровни ряда динамики (одновременно уменьшается коли­чество интервалов). Например, ряд ежесуточного выпуска про­дукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным^ интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.

    * Выявление основной тенденции может осуществляться также методом скользящи (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из опреде­ленного числа, обычно нечетного (3, 5, 7 и т.д.), первыхтю сче­ту уровней ряда, затем - из такого же числа уровней, но начи­ная со второго по счету, далее - начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, пере­двигаясь на один срок.

    на два члена в начале и конце ряда. Он меньше, чем фактиче­ский подвержен колебаниям из-за случайных причин, и четче, в виде некоторой плавной линии на графике, выражает основную тенденцию роста урожайности за изучаемый период, связанную с действием долговременно существующих причин и условий развития.

    Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следователь­но, потеря информации.

    Рассмотренные приемы сглаживания динамических рядов (укрупнение интервалов и метод скользящей средней) дают воз­можность определить лишь общую тенденцию развития явле­ния, более или менее освобожденную от случайных и волнооб­разных колебаний. Однако получить обобщенную статистиче­скую модель тренда посредством этих методов нельзя.

    *Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во вре­мени, используется аналитическое выравнивание ряда динамики.

    где yt - уровни динамического ряда, вычисленные по соответст­вующему аналитическому уравнению на момент времени t.

    Определение теоретических (расчетных) уровней yt произ­водится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимиру­ет) основную тенденцию ряда динамики. Выбор типа модели зависит от цели исследования и должен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).

    Например, простейшими моделями (формулами), выражаю­щими тенденцию развития, являются:

    линейная функция - прямая yt = a0 + a1t,

    где a0,a1 - параметры уравнения; t - время;

    показательная функция yt = A0A1t

    степенная функция - кривая второго порядка (парабола)

    В тех случаях, когда требуется особо точное изучение тен­денции развития (например, модели тренда для прогнозирова­ния), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.

    Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принима­ется точка минимума суммы квадратов отклонений между тео­ретическими и эмпиричесими уровнями:

    где yt - выравненные (расчетные) уровни; yt - фактические уровни.

    Параметры уравнения а,-, удовлетворяющие этому условию, могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней у,- плавно изменяю­щимися уровнями У(, наилучшим образом аппроксимирующилми статистические данные.

    Выравнивание по прямой используется, как правило, в тех случаях, когда абсолютные приросты практически постоянны, т. е. когда уровни изменяются в арифметической прогрессии (или близко к ней).

    Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометриче­ской прогрессии, т. е. когда цепные коэффициенты рос­та практически постоянны.

    Рассмотрим «технику» выравнивания ряда динамики по прямой: yt=a0+a1t

    Параметры а0, а1 согласно методу наименьших квадратов находятся решением следующей системы нор­мальных уравнений, полученной путем алгебраического преобразования условия

    где у - фактические (эмпирические) уровни ряда; t - время (порядковый номеа периода или момента времени).



    Вверх