Оценка параметров регрессионного уравнения. Линейная регрессия и корреляция: смысл и оценка параметров

Экономические явления, как правило, определяются большим числом одновременно и совокупно действующих факторов. В связи с этим часто возникает задача исследования зависимости переменной у от нескольких объясняющих переменных (х 1, х 2 ,…, х k) которая может быть решена с помощью множественного корреляционно-регрессионного анализа.

При исследовании зависимости методами множественной регрессии задача формируется так же, как и при использовании парной регрессии, т.е. требуется определить аналитическое выражение формы связи между результативным признаком у и факторными признаками х, х 2 , ..., х k , найти функцию , где k – число факторных признаков

Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целом ряде других вопросов эконометрики. В настоящее время множественная регрессия – один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии – построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.

Из-за особенностей метода наименьших квадратов во множественной регрессии, как и в парной, применяются только линейные уравнения и уравнения, приводимые к линейному виду путем преобразования переменных. Чаще всего используется линейное уравнение, которое можно записать следующим образом:

a 0 , a 1, …, a k – параметры модели (коэффициенты регрессии);

ε j – случайная величина (величина остатка).

Коэффициент регрессии а j показывает, на какую величину в среднем изменится результативный признак у, если переменную х j увеличить на единицу измерения при фиксированном (постоянном) значении других факторов, входящих в уравнение регрессии. Параметры при x называются коэффициентами «чистой» регрессии .

Пример.

Предположим, что зависимость расходов на продукты питания по совокупности семей характеризуется следующим уравнением:

y – расходы семьи за месяц на продукты питания, тыс. руб.;

x 1 – месячный доход на одного члена семьи, тыс. руб.;

x 2 – размер семьи, человек.

Анализ данного уравнения позволяет сделать выводы – с ростом дохода на одного члена семьи на 1 тыс. руб. расходы на питание возрастут в среднем на 350 руб. при том же среднем размере семьи. Иными словами, 35% дополнительных семейных расходов тратится на питание. Увеличение размера семьи при тех же ее доходах предполагает дополнительный рост расходов на питание на 730 руб. Первый параметр не подлежит экономической интерпретации.

Оценивание достоверности каждого из параметров модели осуществляется при помощи t-критерия Стьюдента. Для любого из параметров модели а j значение t-критерия рассчитывается по формуле , где


S ε – стандартное (среднее квадратическое) отклонение уравнения регрессии)

определяется по формуле

Коэффициент регрессии а j считается достаточно надежным, если расчетное значение t- критерия с (n - k - 1 ) степенями свободы превышает табличное, т.е. t расч > t а jn - k -1 . Если надеж­ность коэффициента регрессии не подтверждается, то следует; вывод о несущественности в модели факторного j признака и необходимости его устранения из модели или замены на другой факторный признак.

Важную роль при оценке влияния факторов играют коэффициенты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставлять факторные признаки по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени колеблемости. Для устранения таких различий применяются частные коэффициенты эластичности Э j и бета-коэффициенты β j .

Формула для расчета коэффициента эластичности

где

a j – коэффициент регрессии фактора j ,

Среднее значение результативного признака

Среднее значение признака j

Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная у при изменении фактора j на 1 %.

Формула определения бета - коэффициента.

, где

S xj – среднее квадратическое отклонение фактора j ;

S y - среднее квадратическое отклонение фактора y.

β - коэффициент показывает, на какую часть величины среднего квадратического отклонения S y из­менится зависимая переменная у с изменением со­ответствующей независимой переменной х j на величину своего среднего квадратического отклонения при фиксированном значении остальных неза­висимых переменных.

Долю влияния определенного фактора в суммарном влиянии всех факторов можно оценить по величине дельта-коэффициентов Δ j .

Указанные коэффициенты позволяют проранжировать факторы по степени влияния факторов на зависимую переменную.

Формула определения дельта - коэффициента.

r yj – коэффициент парной корреляции между фактором j и зависимой переменной;

R 2 – множественный коэффициент детерминации.

Коэффициент множественной детерминации используют для оценки качества множественных регрессионных моделей.

Формула определения коэффициента множественной детерминации.

Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием факторных признаков, т.е. опре­деляет, какая доля вариации признака у учтена в модели и обусловлена влиянием на него факторов, включенных в модель. Чем ближе R 2 к единице, тем выше качество модели

При добавлении независимых переменных значение R 2 уве­личивается, поэтому коэффициент R 2 должен быть скорректи­рован с учетом числа независимых переменных по формуле

Для проверки значимости модели регрессии используется F-критерий Фишера. Он определяется по формуле

Если расчетное значение критерия с γ 1 , = k и γ 2 = (n - k- 1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

В качестве меры точностимодели применяют стандартную ошибку, которая представляет собой отношение суммы квадратов уровней остаточной компоненты к величине (n - k -1):

Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК) . Система нормальных уравнений имеет вид:

Решение системы может быть осуществлено по одному из известных способов: Метод Гаусса, метод Крамера и т.д.

Пример15.

По четырем предприятиям региона (таблица 41) изучается зависимость выработки продукции на одного работника y (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%). Требуется написать уравнение множественной регрессии.

Таблица 41 – Зависимость выработки продукции на одного работника

Линейная регрессия сводится к нахождению уравнения вида:

(или
) (3)

Первое выражение позволяет по заданным значениям фактора х рассчитать теоретические значения результативного признака, подставляя в него фактические значения факторах . На графике теоретические значения лежат на прямой, которые представляют собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров - а иb . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а иb , при которых сумма квадратов отклонений фактических значенийу от теоретических минимальна:

, или
(4)

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров - а иb - и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n - объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительноа иb , получаем:

(7)

(8)

Выражение (7) можно записать в другом виде:

(9)

где со v (х,у) - ковариация признаков, - дисперсия факторах .

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально а - значениеу прих=0. Еслих не имеет и не может иметь нулевого значения, то такая трактовка свободного членаа не имеет смысла. Параметра может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно приа < 0 . Интерпретировать можно лишь знак при параметреа . Еслиа > 0 , то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

при.

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

y′ = b·x" , (10)

где
,
. При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами
. При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции у = a + bx + ε.

Таблица 1

Выпуск продукции тыс.ед.(x )

Затраты на производство, млн.руб.(y )

x 2

y 2

Система нормальных уравнений будет иметь вид:

Решая её, получаем а = -5,79, b = 36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значенияy (последняя колонка таблицы).

Величина а не имеет экономического смысла. Если переменныех иу выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где
,

В качестве другого примера рассмотрим функцию потребления в виде:

С = К·у + L

где С - потребление,у -доход,K , L – параметры. Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством:

y = C + I – r,

где I – размер инвестиций,r – сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений:

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. К ≤ 1.

Предположим, что функция потребления составила:

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е.
, то уравнение регрессии составит
. Это уравнение можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством:

Если коэффициент регрессии оказывается больше единицы, то у < С + 1, и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии в функции потребления используется для расчета мультипликатора:

.

Здесь m≈ 2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r :

(11)

Его значения находятся в границах: 0 < r ≤ 1 . Еслиb > 0 , то0 ≤ r ≤ 1 , приb < 0, – 1 ≤ r < 0 . По данным примераr =0,991, что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляцииr 2 . Он характеризует долю дисперсии результативного признакаy , объясняемую регрессией, в общей дисперсии результативного признака:

12

Величина 1 - r 2 характеризует долю дисперсииу, вызванную влиянием остальных, не учтенных в модели факторов.

В примере σ 2 = 0,092. Уравнением регрессии объясняется 98,2% дисперсииу, а на прочие факторы приходится 1,8%, это остаточная дисперсия.

При оценке параметров уравнения регрессии применяется метод наименьших квадратов (МНК). При этом делаются определенные предпосылки относительно случайной составляющей e. В модели – случайная составляющая e представляет собой ненаблюдаемую величину. После того как произведена оценка параметров модели, рассчитывая разности фактических и теоретических значений результативного признака y , можно определить оценки случайной составляющей . Поскольку они не являются реальными случайными остатками, их можно считать некоторой выборочной реализацией неизвестного остатка заданного уравнения, т. е. ei.

При изменении спецификации модели, добавлении в нее новых наблюдений выборочные оценки остатков ei могут меняться. Поэтому в задачу регрессионного анализа входит не только построение самой модели, но и исследование случайных отклонений ei, т. е. остаточных величин.

При использовании критериев Фишера и Стьюдента делаются предположения относительно поведения остатков ei – остатки представляют собой независимые случайные величины и их среднее значение равно 0; они имеют одинаковую (постоянную) дисперсию и подчиняются нормальному распределению.

Статистические проверки параметров регрессии, показателей корреляции основаны на непроверяемых предпосылках распределения случайной составляющей ei. Они носят лишь предварительный характер. После построения уравнения регрессии проводится проверка наличия у оценок ei (случайных остатков) тех свойств, которые предполагались. Связано это с тем, что оценки параметров регрессии должны отвечать определенным критериям. Они должны быть несмещенными, состоятельными и эффективными. Эти свойства оценок, полученных по МНК, имеют чрезвычайно важное практическое значение в использовании результатов регрессии и корреляции.

Несмещенность оценки означает, что математическое ожидание остатков равно нулю. Если оценки обладают свойством несмещенности, то их можно сравнивать по разным исследованиям.

Оценки считаются эффективными , если они характеризуются наименьшей дисперсией. В практических исследованиях это означает возможность перехода от точечного оценивания к интервальному.

Состоятельность оценок характеризует увеличение их точности с увеличением объема выборки. Большой практический интерес представляют те результаты регрессии, для которых доверительный интервал ожидаемого значения параметра регрессии bi имеет предел значений вероятности, равный единице. Иными словами, вероятность получения оценки на заданном расстоянии от истинного значения параметра близка к единице.

Указанные критерии оценок (несмещенность, состоятельность и эффективность) обязательно учитываются при разных способах оценивания. Метод наименьших квадратов строит оценки регрессии на основе минимизации суммы квадратов остатков. Поэтому очень важно исследовать поведение остаточных величин регрессии ei. Условия, необходимые для получения несмещенных, состоятельных и эффективных оценок, представляют собой предпосылки МНК, соблюдение которых желательно для получения достоверных результатов регрессии.

Исследования остатков ei предполагают проверку наличия следующих пяти предпосылок МНК:

1. случайный характер остатков;

2. нулевая средняя величина остатков, не зависящая от xi;

3. гомоскедастичность – дисперсия каждого отклонения ei, одинакова для всех значений x ;

4. отсутствие автокорреляции остатков – значения остатков ei распределены независимо друг от друга;

5. остатки подчиняются нормальному распределению.

Если распределение случайных остатков ei не соответствует некоторым предпосылкам МНК, то следует корректировать модель.

Прежде всего, проверяется случайный характер остатков ei – первая предпосылка МНК. С этой целью стоится график зависимости остатков ei от теоретических значений результативного признака.


Первое выражение позволяет по заданным значениям фактора x рассчитать теоретические значения результативного признака, подставляя в него фактические значения фактора x . На графике теоретические значения лежат на прямой, которые представляют собой линию регрессии.

Построение линейной регрессии сводится к оценке ее параметров- а и b . Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

Для нахождения минимума надо вычислить частные производные суммы (4) по каждому из параметров – а и b – и приравнять их к нулю.

(5)

Преобразуем, получаем систему нормальных уравнений:

(6)

В этой системе n- объем выборки, суммы легко рассчитываются из исходных данных. Решаем систему относительно а и b , получаем:

(7)

. (8)

Выражение (7) можно записать в другом виде:

(9)

где ковариация признаков, дисперсия фактора x.

Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу. Возможность четкой экономической интерпретации коэффициента регрессии сделала линейное уравнение парной регрессии достаточно распространенным в эконометрических исследованиях.

Формально a – значение y при x=0. Если x не имеет и не может иметь нулевого значения, то такая трактовка свободного члена a не имеет смысла. Параметр a может не иметь экономического содержания. Попытки экономически интерпретировать его могут привести к абсурду, особенно при a < 0. Интерпретировать можно лишь знак при параметре a. Если a > 0, то относительное изменение результата происходит медленнее, чем изменение фактора. Сравним эти относительные изменения:

< при > 0, > 0 <

Иногда линейное уравнение парной регрессии записывают для отклонений от средних значений:

где , . При этом свободный член равен нулю, что и отражено в выражении (10). Этот факт следует из геометрических соображений: уравнению регрессии отвечает та же прямая (3), но при оценке регрессии в отклонениях начало координат перемещается в точку с координатами . При этом в выражении (8) обе суммы будут равны нулю, что и повлечет равенство нулю свободного члена.

Рассмотрим в качестве примера по группе предприятий, выпускающих один вид продукции, регрессионную зависимость издержек от выпуска продукции .

Таблица 1

Выпуск продукции тыс.ед.() Затраты на производство, млн.руб.()
31,1
67,9
141,6
104,7
178,4
104,7
141,6
Итого: 22 770,0

Система нормальных уравнений будет иметь вид:

Решая её, получаем a= -5,79, b=36,84.

Уравнение регрессии имеет вид:

Подставив в уравнение значения х , найдем теоретические значения y (последняя колонка таблицы).

Величина a не имеет экономического смысла. Если переменные x и y выразить через отклонения от средних уровней, то линия регрессии на графике пройдет через начало координат. Оценка коэффициента регрессии при этом не изменится:

, где , .

В качестве другого примера рассмотрим функцию потребления в виде:

,

где С- потребление, y –доход, K,L- параметры. Данное уравнение линейной регрессии обычно используется в увязке с балансовым равенством:

,

где I – размер инвестиций, r – сбережения.

Для простоты предположим, что доход расходуется на потребление и инвестиции. Таким образом, рассматривается система уравнений:

Наличие балансового равенства накладывает ограничения на величину коэффициента регрессии, которая не может быть больше единицы, т.е. .

Предположим, что функция потребления составила:

.

Коэффициент регрессии характеризует склонность к потреблению. Он показывает, что из каждой тысячи рублей дохода на потребление расходуется в среднем 650 руб., а 350 руб. инвестируется. Если рассчитать регрессию размера инвестиций от дохода, т.е. , то уравнение регрессии составит . Это уравнение можно и не определять, поскольку оно выводится из функции потребления. Коэффициенты регрессии этих двух уравнений связаны равенством:

Если коэффициент регрессии оказывается больше единицы, то , и на потребление расходуются не только доходы, но и сбережения.

Коэффициент регрессии в функции потребления используется для расчета мультипликатора:

Здесь m ≈2,86, поэтому дополнительные вложения 1 тыс. руб. на длительный срок приведут при прочих равных условиях к дополнительному доходу 2,86 тыс. руб.

При линейной регрессии в качестве показателя тесноты связи выступает линейный коэффициент корреляции r:

(11)

Его значения находятся в границах: . Если b > 0, то при b < 0 . По данным примера , что означает очень тесную зависимость затрат на производство от величины объема выпускаемой продукции.

Для оценки качества подбора линейной функции рассчитывается коэффициент детерминации как квадрат линейного коэффициента корреляции r 2 . Он характеризует долю дисперсии результативного признака y , объясняемую регрессией, в общей дисперсии результативного признака:

(12)

Величина характеризует долю дисперсии y , вызванную влиянием остальных, не учтенных в модели факторов.

В примере . Уравнением регрессии объясняется 98,2% дисперсии , а на прочие факторы приходится 1,8%, это остаточная дисперсия.


1.3. Предпосылки МНК (условия Гаусса-Маркова)

Как было сказано выше, связь между y и x в парной регрессии является не функциональной, а корреляционной. Поэтому оценки параметров a и b являются случайными величинами, свойства которых существенно зависят от свойств случайной составляющей ε. Для получения по МНК наилучших результатов необходимо выполнение следующих предпосылок относительно случайного отклонения (условия Гаусса-Маркова):

1 0 . Математическое ожидание случайного отклонения равно нулю для всех наблюдений: .

2 0 . Дисперсия случайных отклонений постоянна: .

Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсии отклонений)

3 0 . Случайные отклонения ε i и ε j являются независимыми друг от друга для :

Выполнимость этого условия называется отсутствием автокорреляции .

4 0 . Случайное отклонение должно быть независимо от объясняющих переменных.

Обычно это условие выполняется автоматически, если объясняющие переменные в данной модели не являются случайными. Кроме того, выполнимость данной предпосылки для эконометрических моделей не столь критична по сравнению с первыми тремя.

При выполнимости указанных предпосылок имеет место теорема Гаусса -Маркова : оценки (7) и (8), полученные по МНК, имеют наименьшую дисперсию в классе всех линейных несмещенных оценок .

Таким образом, при выполнении условий Гаусса-Маркова оценки (7) и (8) являются не только несмещенными оценками коэффициентов регрессии, но и наиболее эффективными, т.е. имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин y i .

Именно понимание важности условий Гаусса-Маркова отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

ГЛАВА 3. МОДЕЛЬ МНОЖЕСТВЕННОЙ

ЛИНЕЙНОЙ РЕГРЕССИИ

Основные понятия и уравнения множественной регрессии

На любой экономический показатель чаще всего оказывает влияние не один, а несколько совокупно действующих факторов. Например, объем реализации (Y ) для предприятий оптовой торговли может определяться уровнем цен (Х 1), числом видов товаров (Х 2), размером торговой площади (Х 3) и товарных запасов (Х 4). В целом объем спроса на какой-либо товар определяется не только его ценой (Х 1), но и ценой на конкурирующие товары (Х 2), располагаемым доходом потребителей (Х 3), а также некоторыми другими факторами. Показатель инновационной активности современных предприятий зависит от затрат на исследования и разработки (Х 1), на приобретение новых технологий (Х 2), на приобретение программных продуктов и средств (Х 3) и обучение и переподготовку кадров . В этих случаях возникает необходимость рассмотрения моделей множественной (многофакторной, многомерной) регрессии .

Модель множественной линейной регрессии является естественным обобщением парной (однофакторной) линейной регрессионной модели. В общем случае ее теоретическое уравнение имеет вид:

где Х 1 , Х 2 ,…, Х m – набор независимых переменных (факторов-аргументов); b 0 , b 1 , …, b m – набор (m + 1) параметров модели, подлежащих определению; ε – случайное отклонение (ошибка); Y – зависимая (объясняемая) переменная.

Для индивидуального i -го наблюдения (i = 1, 2, …, n ) имеем:

. (3.3)

Здесь b j называется j -м теоретическим коэффициентом регрессии (частичным коэффициентом регрессии).

Аналогично случаю парной регрессии, истинные значения параметров (коэффициентов) b j по выборочным данным получить невозможно. Поэтому для определения статистической взаимосвязи переменных Y и Х 1 , Х 2 , …, Х m оценивается эмпирическое уравнение множественной регрессионной модели

в котором , – оценки соответствующих теоретических коэффициентов регрессии; е – оценка случайного отклонения ε.

Оцененное уравнение (3.4) в первую очередь должно описывать общий тренд (направление, тенденцию) изменения зависимой переменной Y . При этом необходимо иметь возможность рассчитать отклонения от этого тренда.

Для решения задачи определения оценок параметров множественной линейной регрессии по выборке объема n необходимо выполнение неравенства n ³ m + 1 (m – число регрессоров). В данном случае число v = n - m - 1 будет называться числом степеней свободы. Отсюда для парной регрессии имеем v = n - 2. Нетрудно заметить, что если число степеней свободы невелико, то и статистическая надежность оцениваемой формулы невысока. На практике принято считать, что достаточная надежность обеспечивается в том случае, когда число наблюдений по крайней мере в три раза превосходит число оцениваемых параметров k = m + 1. Обычно, статистическая значимость парной модели наблюдается при n ≥ 7.

Самым распространенным методом оценки параметров уравнения множественной линейной регрессионной модели является метод наименьших квадратов (МНК) . Напомним (см. раздел 2.4.1), что надежность оценок и статистических выводов, полученных с использованием МНК, обеспечивается при выполнении предпосылок Гаусса-Маркова. В случае множественной линейной регрессии к предпосылкам 1–4 необходимо добавить еще одну (пятую) – отсутствие мультиколлинеарности , что означает отсутствие линейной зависимости между объясняющими переменными в функциональной или статистической форме. Более подробно мультиколлинеарность объясняющих переменных будет рассмотрена в разделе (3.4). Модель, удовлетворяющая предпосылкам МНК, называется классической нормальной моделью множественной регрессии .

На практике часто бывает необходимо оценить силу влияния на зависимую переменную различных объясняющих (факторных) переменных. В этом случае используют стандартизованные коэффициенты регрессии и средние коэффициенты эластичности .

Стандартизированный коэффициент регрессии определяется по формуле:

(3.5)

где S (x j ) и S (y ) – выборочные средние квадратичные отклонения (стандарты) соответствующей объясняющей и зависимой переменных.

Средний коэффициент эластичности

(3.6)

показывает, на сколько процентов (от средней) изменится в среднем зависимая переменная Y при увеличении только j -й объясняющей переменной на 1 %.

Для модели с двумя объясняющими (факторными) переменными , после нахождения оценок , уравнение определяет плоскость в трехмерном пространстве. В общем случае m независимых переменных геометрической интерпретацией модели является гиперплоскость в гиперпространстве.

Оценка параметров регрессионной модели

Для нахождения оценок параметров b j множественной линейной регрессионной модели (коэффициентов эмпирического уравнения регрессии) используется метод наименьших квадратов (МНК). Суть МНК заключается в минимизации суммы квадратов отклонений наблюдаемых выборочных значений y i зависимой переменной Y от их модельных оценок . Отклонение е i , соответствующее уравнению регрессии в i -м наблюдении (i = 1, 2, …, n ), рассчитывается по формуле:

Тогда для нахождения коэффициентов по МНК минимизируется следующая функция m + 1 переменных:

. (3.8)

Необходимым условием минимума функции G является равенство нулю всех ее частных производных по Частные производные квадратичной функции (3.8) являются линейными функциями относительно параметров:

. (3.9)

Приравнивая (3.9) к нулю, получаем систему m + 1 линейных нормальных уравнений с m + 1 неизвестными для определения параметров модели:

(3.10)

где j = 1, 2, …, m – определяет набор регрессоров.

Следует заметить, что включение в модель новых объясняющих переменных усложняет расчет коэффициентов множественной линейной регрессии путем решения системы (3.10) по сравнению с парной моделью. Система из трех уравнений, соответствующая модели с двумя объясняющими переменными , может быть легко решена методом определителей. Однако в общем виде решение системы (3.10) и анализ множественной регрессионной модели наиболее целесообразно проводить в векторно-матричной форме .

Тогда, вводя матричные обозначения, запишем:

, , .

Здесь Y n -мерный вектор-столбец наблюдений зависимой переменной; Х – матрица размерности n · (m + 1) значений объясняющих переменных x ij , в которой единица соответствует переменной при свободном члене ; – вектор-столбец размерности m + 1 оценок параметров модели (коэффициентов уравнения регрессии); е – вектор-столбец размерности n отклонений выборочных (реальных) значений y i зависимой переменной, от значений оценок , получаемых по уравнению регрессии.

В матричной форме модель (3.1) примет вид:

Y = XB + e. (3.11)

Оценкой этой модели по выборочным данным является уравнение (эмпирическая модель)

Предпосылки МНК (см. раздел 2.4.1.) в матричной форме можно записать следующим образом:

1. M (e) = 0; 2. D (e) = σ 2 I ; 3. Матрица ковариаций V (e) = M (e · e T ) = σ 2 E,

где e = – вектор-столбец случайных отклонений (ошибок);

I = – (n · 1) вектор;

E = E n × n = – единичная матрица;

– матрица ковариаций или ковариационная матрица вектора случайных отклонений, которая является многомерным аналогом дисперсии одной переменной и в которой, если предпосылка о некоррелированности отклонений e i и e j выполняется, все элементы, не лежащие на главной диагонали, равны нулю, а элементы главной диагонали равны одной и той же дисперсии D (e i ) = σ 2 ; 4. e – нормально распределенный случайный вектор, т. е. e ~ N (0, σ 2 Е); 5. r (X ) = m + 1 > n – детерминированная матрица объясняющих переменных (регрессоров) имеет ранг r , равный числу определяемых параметров модели m + 1, кроме того, число имеющихся наблюдений каждой из объясняющих переменных и зависимой переменной превосходит ранг матрицы Х .

Выполнение пятой предпосылки означает линейную независимость объясняющих переменных (линейную независимость столбцов матрицы Х ), т. е. отсутствие функциональной мультиколлинеарности.

Наша задача заключается в нахождении вектора оценок по МНК, который, при выполнении предпосылок 1–5, обладает наименьшим рассеянием относительно параметра B .

Воспользовавшись известными соотношениями матричной алгебры и правилами дифференцирования по векторному аргументу, получим необходимое условие минимума функции G (равенство нулю вектор-столбца частных производных )



Вверх