Когда осуществляется биохимический анализ крови и как проводится расшифровка результатов? Биохимия (биологическая химия)

Что такое БиоХимия?

Вопрос решен и закрыт .

    Будущий врач, химик или фармацевт?

    3)ну так белки - они же денатурируют, поэтому и в осадок выпадают! нагреваешь выше 70 градусов и всё. водородные связи распались. белок потерял свою форму в пространстве, т.е. распалась вторичная структура (это когда он закручивался в спираль и занимал определенное пположение в просранстве), только первичная структура не пострадала (аминокислоты, последовательно соединённые пептидными связями "в линию")... * ___это примерно как, если бы песочная фигура вдруг рассыпалась на песчинки и потеряла свою форму в пространстве, хотя молекулы песка сохранились те же___ * ну или кроме нагревания, кислотой и другими химикалиями, органическими растворителями (этанол, например), солями тяжелых металлов можно на белок воздействовать и он в осадок выпадет, ещё УВ излучение, формалин)) ... с третичноу структурой всё сложнее. там еще бывают ионные (соо- и NH3+), гидрофильные, гидрофобные связи...

    2)гидролиз белков пролисходит в кислой среде, при повыш. температуре. (методы см.выше) а ещё биохимический гидролиз делают энзимы:) - протеазы. из протеина образуются пептоны, потом полипептиды, потом альфааминокислоты. во, биохимический метод.

    1)а если у аминокислоты 2 группы СООН, то у этой кислоты будет отрицательный заряд и соответсвенно - кислотные свойста, а если две группы ОН, то отрицательный заряд и щелочные свойтсва. а какие особенности реакции конденсации - я в ступоре, не знаю.

    Из пальца кровь берут для мелких анализов: глюкометр - на сахар, на группу крови могут брать, на проверку уровня гемоглобина. Из вены берут на крупные анализы (гепатит, СПИД и т.д.)

    Кровь из пальца??? Странно... уже давно из пальца кровь не берут... ты с какой деревни?


    Берут ещё как. Везде!

    эта деревня называется россией)))


    В России медицина одна из лучших в мире! Разные клиники есть. И не называй Россию деревней! Москва, Питер, Казань, Челябинск, Уфа, Омск, Новосибирск и многое др. городов все около миллиона или больше населением. И ты там был? Я был! Везде динамика! Народ бегает, торгует, работает... а у нас в Латвии внешне наблюдается латышская тормознутость. Картину везде наблюдал: прямая трасса, машине надо повернуть налево, естественно она немного тормозит, в России же народ за этой машиной не будет ждать, пока она повернёт, они все объедут по обочине и поедут дальше. Потому как там важно успевать и делать!
  • Можно спать спокойно,но периодически раз в полгода повторять.Так врачи рекомендуют.

    В любом случае придется сдавать и практику, и теорию. Лучше всё подучить, позаниматься самостоятельно и с репетитором. Темы:
    1. Кровь;
    2. Клиническая биохимия;
    3. Мышцы;
    4. Отклонения и нормы;
    5. Аминокислоты;
    6. Белки;
    7. Ферменты;
    8. Обмен аминокислот;
    9. Витамины;
    10. Жиры;
    11. Углеводы;
    12. Нарушение обмена аминокислот;
    13. Превращение аминокислот;
    14. Обмен азотистых оснований и нуклеотидов;
    15. Матричные биосинтозы;
    16. Биосинтозы;
    17. Обмен и строение углеводов;
    18. Общие пути катаболизма;
    19. Гормональная сигнализация;
    20. Биохимия азотистых веществ крови;
    21. Обмен гема и гемоглобина;
    22. Кислотно-основное состояние;
    23. Биохимия почек;
    24. Биохимия печени.

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

В некоторых временных эпизодах XIX века терминологическая единица «биохимия» стала впервые использоваться. Однако была введена в научные круги лишь в 1903 году химиком из Германии - Карлом Нейбергом. Эта наука занимает промежуточную позицию между биологией и химией.

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

Развитие общего набора направлений, которые в конечном итоге привели к созданию биохимии, наблюдается уже в древних временах. Ученый-врач из Персии в десятом веке написал книгу о канонах врачебной науки, где смог подробно изложить описание различных лекарственных веществ. В XVII веке ван Гельмонт предложил термин «фермента» как единицы реагента химической природы, участвующей в пищеварительных процессах.

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия - это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

В конечном итоге биохимия включила понятие молекулярной биологии. Отличаются они между собой преимущественно методами действий и предметам, которые они изучают. В настоящее время терминологические единицы «биохимия» и «молекулярная биология» стали использоваться в качестве синонимов.

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

    Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

    Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

    Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

    Гормональная биохимия - наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

    Наука об обмене веществ и его механизмах - динамический раздел биохимии (включает в себя биоэнергетику).

    Исследования молекулярной биологии.

    Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

    Медицинская биохимия - раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

    Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

    Средства исследования и решения проблем

    Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

    В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

    Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

    Химическая составляющая

    Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

    В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

    Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

    99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

    Биомолекула белка

    Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

    Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров - аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

    Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

    Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

    Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

    Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

    Молекула нуклеиновой кислоты

    Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

    Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

    Молекула липида

    Липиды - это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

    Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

    Молекула углевода

    Углеводы - это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

    Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных - гликоген.

    Течение цикла Кребса

    Существует в биохимии цикл Кребса - явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

    Наблюдать его можно внутри клеточных митохондрий. Образуется посредством нескольких реакций, в ходе которых высвобождаются запасы «спрятанной» энергии.

    В биохимии цикл Кребса - это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

    Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

    Биохимия и медицина

    Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

    Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

    Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

    вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

    Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

    Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

Этот вид лабораторной диагностики знаком практически каждому, врачи его назначают в первую очередь – как быстрый и информативный метод оценки состояния здоровья. Однако редкий пациент, получая результаты на руки, сможет расшифровать длинный список названий и цифр. И, хотя доскональной оценки всех этих характеристик от нас никто не требует, для этого есть врачи, общее представление о показателях, измеряемых в ходе биохимического анализа крови, все же стоит иметь.

Биохимический анализ крови: зачем и когда он проводится?

Большинство патологий человеческого организма сказывается на составе крови. Выявляя концентрацию тех или иных химических или структурных элементов крови, можно делать выводы о наличии и течении заболеваний. Таким образом, анализ крови «на биохимию» назначают для диагностики и контроля лечения. Важную роль биохимический анализ крови играет при наблюдении беременности. Если женщина чувствует себя нормально, он назначается в первом и третьем триместрах, а при токсикозах, угрозе выкидыша, жалобах на недомогание – чаще.

Подготовка и проведение процедуры

Сдача крови на биохимию предполагает соблюдение ряда условий – в противном случае диагностика будет некорректной.

  • Кровь на биохимический анализ сдается натощак, в утренние часы – обычно в промежутке с 8 до 11, чтобы выдержать требование не меньше 8 часов, но не больше 12–14 часов голода. Накануне и в день процедуры из напитков рекомендуется пить только воду, избегать тяжелой пищи – питаться нейтрально.
  • Необходимо уточнить у вашего врача, следует ли сделать перерыв в приеме медикаментозных препаратов и на какой период. Некоторые лекарства могут исказить данные анализа.
  • Как минимум за час до исследования необходимо прекратить курение. Прием алкоголя прекращают за сутки до исследования.
  • Рекомендуется избегать физических и эмоциональных стрессов накануне процедуры. Придя в медицинское учреждение, постарайтесь спокойно посидеть минут 10–20 перед тем, как будет взята кровь.
  • Если вам назначен курс физиотерапии, проводилось какое-либо инструментальное исследование, процедуру, вероятно, лучше отложить. Проконсультируйтесь со своим врачом.

В случаях, когда необходимо получить лабораторные показатели в динамике, повторные исследования следует проводить в том же медицинском учреждении и при сходных условиях.

Расшифровка результатов биохимического анализа крови: норма и отклонения

Готовые результаты предоставляются пациентам в виде таблицы, в которой отмечено, какие именно анализы проводились, какие показатели получены и как они соотносятся с нормой. Расшифровка результатов биохимического анализа крови может быть произведена достаточно быстро и даже онлайн, вопрос только в загруженности специалистов и в организации самого процесса. В среднем на получение расшифровки уходит 2–3 дня.

Анализ на биохимию крови может проводиться по минимальному или расширенному профилю в зависимости от клинической картины и назначения врача. Минимальный профиль в медицинских учреждениях Москвы стоит 3000–4000 рублей, расширенный – 5000–6000 рублей. Сравнивая цены, обратите внимание: забор крови из вены может оплачиваться отдельно, его стоимость – 150–250 рублей.

БИОХИМИЯ (биологическая химия) - биологическая наука, изучающая химическую природу веществ, входящих в состав живых организмов, их превращения и связь этих превращений с деятельностью органов и тканей. Совокупность процессов, неразрывно связанных с жизнедеятельностью, принято называть обменом веществ (см. Обмен веществ и энергии).

Изучение состава живых организмов издавна привлекало внимание ученых, поскольку к числу веществ, входящих в состав живых организмов, помимо воды, минеральных элементов, липидов, углеводов и т. д., относится ряд наиболее сложных органических соединений: белки и их комплексы с рядом других биополимеров, в первую очередь с нуклеиновыми кислотами.

Установлена возможность спонтанного объединения (при определенных условиях) большого числа белковых молекул с образованием сложных надмолекулярных структур, напр, белкового чехла хвоста фага, некоторых клеточных органоидов и т. д. Это позволило ввести понятие о самособирающихся системах. Такого рода исследования создают предпосылки для решения проблемы образования сложнейших надмолекулярных структур, обладающих признаками и свойствами живой материи, из высокомолекулярных органических соединений, возникших некогда в природе абиогенным путем.

Современная Б. как самостоятельная наука сложилась на рубеже 19 и 20 вв. До этого времени вопросы, рассматриваемые ныне Б., изучались с разных сторон органической химией и физиологией. Органическая химия (см.), изучающая углеродистые соединения вообще, занимается, в частности, анализом п синтезом тех хим. соединений, которые входят в состав живой ткани. Физиология (см.) же наряду с изучением жизненных функций изучает и хим. процессы, лежащие в основе жизнедеятельности. Т. о., биохимия является продуктом развития этих двух наук и ее можно подразделить на две части: статическую (или структурную) и динамическую. Статическая Б. занимается изучением природных органических веществ, их анализом и синтезом, тогда как динамическая Б. изучает всю совокупность химических превращений тех или иных органических соединений в процессе жизнедеятельности. Динамическая Б., т. о., стоит ближе к физиологии и медицине, чем к органической химии. Этим и объясняется то, что вначале Б. называлась физиологической (или медицинской) химией.

Как всякая быстро развивающаяся наука, Б. вскоре после своего возникновения начала делиться на ряд обособленных дисциплин: биохимия человека и животных, биохимия растений, биохимия микробов (микроорганизмов) и ряд других, поскольку, несмотря на биохимическое единство всего живого, в животных и растительных организмах существуют и коренные различия в характере обмена веществ. В первую очередь это касается процессов ассимиляции. Растения, в отличие от животных организмов, обладают способностью использовать для построения своего тела такие простые химические вещества, как углекислый газ, вода, соли азотной и азотистой кислот, аммиак и др. При этом процесс построения клеток растений требует для своего осуществления притока энергии извне в форме солнечного света. Использование этой энергии первично осуществляют зеленые аутотрофные организмы (растения, простейшие - Euglena, ряд бактерий), которые в свою очередь сами служат пищей для всех остальных, так наз. гетеротрофных организмов (в т. ч. и человека), населяющих биосферу (см.). Т. о., выделение биохимии растений в особую дисциплину является обоснованным как с теоретической, так и практической сторон.

Развитие ряда отраслей промышленности и сельского хозяйства (переработка сырья растительного и животного происхождения, приготовление пищевых продуктов, изготовление витаминных и гормональных препаратов, антибиотиков и т. д.) привело к выделению в особый раздел технической Б.

При изучении химизма различных микроорганизмов исследователи столкнулись с целым рядом специфических веществ и процессов, представляющих большой научно-практический интерес (антибиотики микробного и грибкового происхождения, различные виды брожений, имеющие промышленное значение, образование белковых веществ из углеводов и простейших азотистых соединений и т. д.). Все эти вопросы рассматривают в биохимии микроорганизмов.

В 20 в. возникла как особая дисциплина биохимия вирусов (см. Вирусы).

Потребностями клинической медицины было вызвано возникновение клинической биохимии (см.).

Из других разделов Б., которые обычно рассматриваются как достаточно обособленные дисциплины, имеющие свои задачи и специфические методы исследования, следует назвать: эволюционную и сравнительную Б. (биохимические процессы и хим. состав организмов на различных стадиях их эволюционного развития), энзимологию (структура и функция ферментов, кинетика ферментативных реакций), Б. витаминов, гормонов, радиационную биохимию, квантовую биохимию - сопоставление свойств, функций и путей превращения биологически важных соединений с их электронными характеристиками, полученными с помощью квантовохимических расчетов (см. Квантовая биохимия).

Особенно перспективным оказалось изучение структуры и функции белков и нуклеиновых кислот на молекулярном уровне. Этот круг вопросов изучается науками, возникшими на стыках Б. с биологией и генетикой,- молекулярной биологией (см.) и биохимической генетикой (см.).

Исторический очерк развития исследований по химии живой материи. Изучение живой материи с химической стороны началось с того момента, когда возникла необходимость исследования составных частей живых организмов и совершающихся в них химических процессов в связи с запросами практической медицины и сельского хозяйства. Исследования средневековых алхимиков привели к накоплению большого фактического материала по природным органическим соединениям. В 16 - 17 вв. воззрения алхимиков получили развитие в трудах ятрохимиков (см. Ятрохимия), считавших, что жизнедеятельность организма человека можно правильно понять лишь с позиций химии. Так, один из виднейших представителей ятрохимии - немецкий врач и естествоиспытатель Ф. Парацельс выдвинул прогрессивное положение о необходимости тесной связи химии с медициной, подчеркивая при этом, что задача алхимии не в изготовлении золота и серебра, а в создании того, что является силой и добродетелью медицины. Ятрохимики ввели в мед. практику препараты ртути, сурьмы, железа и других элементов. Позже И. Ван-Гельмонт высказал предположение о наличии в «соках» живого тела особых начал - так наз. «ферментов», участвующих в разнообразных хим. превращениях.

В 17 -18 вв. широкое распространение получила теория флогистона (см. Химия). Опровержение этой, ошибочной в своей основе, теории связано с работами М. В. Ломоносова и А. Лавуазье, открывших и утвердивших в науке закон сохранения материи (массы). Лавуазье внес важнейший вклад в развитие не только химии, но и в изучение биол, процессов. Развивая более ранние наблюдения Майова (J. Mayow, 1643-1679), он показал, что при дыхании, как и при горении органических веществ, поглощается кислород и выделяется углекислый газ. Одновременно им же, вместе с Лапласом, было показано, что процесс биологического окисления является и источником животной теплоты. Это открытие стимулировало исследования по энергетике метаболизма, в результате чего уже в начале 19 в. было определено количество тепла, выделяемого при сгорании углеводов, жиров и белков.

Крупными событиями второй половины 18 в. стали исследования Реомюра (R. Reaumur) и Спалланцани (L. Spallanzani) по физиологии пищеварения. Эти исследователи впервые изучили действие желудочного сока животных и птиц на различные виды пищи (гл. обр. мясо) и положили начало изучению ферментов пищеварительных соков. Возникновение энзимологии (учения о ферментах), однако, обычно связывают с именами К. С. Кирхгофа (1814), а также Пейена и Персо (A. Payen, J. Persoz, 1833), впервые изучивших действие на крахмал фермента амилазы in vitro.

Важную роль сыграли работы Пристли (J. Priestley) и особенно Ингенхауса (J. Ingenhouse), открывших явление фотосинтеза (конец 18 в.).

На рубеже 18 и 19 вв. были проведены и другие фундаментальные исследования в области сравнительной биохимии; тогда же было установлено существование круговорота веществ в природе.

Успехи статической Б. с самого начала были неразрывно связаны с развитием органической химии.

Толчком к развитию химии природных соединений явились исследования шведского химика К. Шееле (1742 - 1786). Он выделил и описал свойства целого ряда природных соединений - молочную, винную, лимонную, щавелевую, яблочную кислоты, глицерин и амиловый спирт и др. Большое значение имели исследования И. Берцелиуса и 10. Либиха, закончившиеся разработкой в начале 19 в. методов количественного элементарного анализа органических соединений. Вслед за этим начались попытки синтезировать природные органические вещества. Достигнутые успехи - синтез в 1828 г. мочевины Ф. Веллером, уксусной к-ты А. Кольбе (1844), жиров П. Бертло (1850), углеводов А. М. Бутлеровым (1861) - имели особенно большое значение, т. к. показали возможность синтеза in vitro ряда органических веществ, входящих в состав животных тканей или же являющихся конечными продуктами обмена. Тем самым была установлена полная несостоятельность широко распространенных в 18-19 вв. виталистических представлений (см. Витализм). Во второй половине 18 - начале 19 в. были проведены и многие другие важные исследования: из мочевых камней была выделена мочевая к-та (Бергман и Шееле), из желчи - холестерин [Конради (J. Conradi)], из меда - глюкоза и фруктоза (Т. Ловиц), из листьев зеленых растений - пигмент хлорофилл [Пеллетье и Кавенту (J. Pelletier, J. Caventou)], в составе мышц был открыт креатин [ Шев-рель (М. E. Chevreul)]. Было показано существование особой группы органических соединений - растительных алкалоидов (Сертюрнер, Мейстер и др.), нашедших позднее применение в мед. практике. Из желатины и бычьего мяса путем их гидролиза были получены первые аминокислоты - глицин и лейцин [Пруст (J. Proust), 1819; Браконно (H. Braconnot), 1820].

Во Франции в лаборатории К. Бернара в составе ткани печени был открыт гликоген (1857), изучены пути его образования и механизмы, регулирующие его расщепление. В Германии в лабораториях Э. Фишера, Э. Ф. Гоппе-Зейлера, А. Косселя, Э. Абдергальдена и других были изучены структура и свойства белков, а также продуктов их гидролиза, в т. ч. и ферментативного.

В связи с описанием дрожжевых клеток (К. Коньяр-Латур во Франции и Т. Шванн в Германии, 1836 -1838 гг.) начали активно изучать процесс брожения (Либих, Пастер и др.). Вопреки мнению Либиха, рассматривавшего процесс брожения как чисто химический процесс, протекающий с обязательным участием кислорода, Л. Пастер установил возможность существования анаэробиоза т. е. жизни в отсутствие воздуха, за счет энергии брожения (процесса, неразрывно связанного, по его мнению, с жизнедеятельностью клеток, напр, клеток дрожжей). Ясность в этот вопрос была внесена опытами М. М. Манассеиной (1871), показавшей возможность сбраживания сахара разрушенными (растиранием с песком) дрожжевыми клетками, и особенно работами Бухнера (1897) по природе брожения. Бухнеру удалось получить из дрожжевых клеток бесклеточный сок, способный, подобно живым дрожжам, сбраживать сахар с образованием спирта и углекислоты.

Возникновение и развитие биологической (физиологической) химии

Накопление большого количества сведений относительно химического состава растительных и животных организмов и химических процессов, протекающих в них, привело к необходимости систематизации и обобщений в области Б. Первой работой в этом плане был учебник Зимона (J. E. Simon) «Handbuch der angewandten medizinischen Chemie» (1842). Очевидно, именно с этого времени термин «биологическая (физиологическая) химия» утвердился в науке.

Несколько позднее (1846) вышла в свет монография Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». В России первый учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 г. Периодическая литература по биологической (физиологической) химии регулярно начала выходить с 1873 г. в Германии. В этом году Мали (L. R. Maly) опубликовал «Jahres-Bericht uber die Fortschritte der Tierchemie». B 1877 г. Э. Ф. Гоппе-Зейлером был основан научный журнал «Zeitschr. fur physiologische Chemie», переименованный впоследствии в «Hoppe-Seyler’s Zeitschr. fur physiologische Chemie». Позднее биохимические журналы начали издаваться во многих странах мира на английском, французском, русском и других языках.

Во второй половине 19 в. на медицинских факультетах многих русских и зарубежных университетов были учреждены специальные кафедры медицинской, или физиологической, химии. В России первая кафедра медицинской химии была организована А. Я. Данилевским в 1863 г. в Казанском ун-те. В 1864 г. А. Д. Булыгинский основал кафедру медицинской химии на медицинском ф-те Московского ун-та. Вскоре кафедры медицинской химии, позднее переименованные в кафедры физиологической химии, возникают на медицинских факультетах других университетов. В 1892 г. начинает функционировать организованная А. Я. Данилевским кафедра физиологической химии в Военно-медицинской (медико-хирургической) академии в Петербурге. Однако чтение отдельных разделов курса физиологической химии проводилось там значительно раньше (1862- 1874) на кафедре химии (А. П. Бородин).

Подлинный расцвет Б. наступил в 20 в. В самом начале ого была сформулирована и экспериментально обоснована полипептидная теория строения белков (Э. Фишер, 1901 - 1902, и др.). Позднее был разработан ряд аналитических методов, в т. ч. микрометодов, позволяющих изучать аминокислотный состав минимальных количеств белка (несколько миллиграммов); широкое распространение получил метод хроматографии (см.), впервые разработанный русским ученым М. С. Цветом (1901 - 1910), методы рентгеноструктурного анализа (см.), «меченых атомов» (изотопной индикации), цитоспектрофотометрии, электронной микроскопии (см.). Крупных успехов добивается препаративная белковая химия, разрабатываются эффективные методы выделения и фракционирования белков и ферментов и определения их молекулярного веса [Коэн (S. Cohen), Тизелиус (A. Tiselius), Сведберг (Т. Swedberg)].

Расшифровывается первичная, вторичная, третичная и четвертичная структура многих белков (в т. ч. и ферментов) и полипептидов. Синтезируется ряд важных, обладающих биологической активностью белковых веществ.

Крупнейшие заслуги в развитии этого направления связаны с именами Л. Полинга и Кори (R. Corey) - структура полипептидных цепей белка (1951); В. Виньо - структура и синтез окситоцина и вазопрессин (1953); Сэнгера (F. Sanger) - структура инсулина (1953); Стайна (W. Stein) и С. Мура - расшифровка формулы рибонуклеазы, создание автомата для определения аминокислотного состава белковых гидролизатов; Перутца (М. F. Perutz), Кендрю (J. Kendrew) и Филлипса (D. Phillips) - расшифровка с помощью методов рентгеноструктурного анализа структуры и создание трехмерных моделей молекул миоглобина, гемоглобина, лизоцима и ряда других белков (1960 и последующие годы).

Выдающееся значение имели работы Самнера (J. Sumner), впервые доказавшего (1926) белковую природу фермента уреазы; исследования Нортропа (J. Northrop) и Кунитца (М. Kunitz) по очистке и получению кристаллических препаратов ферментов - пепсина и других (1930); В. А. Энгельгардта о наличии АТФ-азной активности у контрактильного белка мышц миозина (1939 - 1942) и т. д. Большое число работ посвящается изучению механизма ферментативного катализа [Михаэлис и Ментен (L. Michaelis, М. L. Menten), 1913; Р. Вильштеттер, Теорелль, Кошленд (Н. Theorell, D. E. Koshland), A. E. Браунштейн и М. М. Шемякин, 1963; Штрауб (F. В. Straub) и др.], сложных мультиферментных комплексов (С. Е. Северин, Ф. Линен и др.), роли структуры клеток в осуществлении ферментативных реакций, природы активных и аллостерических центров в молекулах ферментов (см. Ферменты), первичной структуры ферментов [В. Шорм, Анфинсен (С. В. Anfinsen), В. Н. Орехович и др.], регуляции активности ряда ферментов гормонами (В. С. Ильин и др.). Изучаются свойства «семейств ферментов» - изоферментов [Маркерт, Каплан, Вроблевский (С. Markert, N. Kaplan, F. Wroblewski), 1960-1961].

Важным этапом в развитии Б. явилась расшифровка механизма биосинтеза белка при участии рибосом, информационной и транспортной форм рибонуклеиновых кислот [Ж. Браше, Ф. Жакоб, Моно (J. Monod), 1953-1961; А. Н. Белозерский (1959); А. С. Спирин, А. А. Баев (1957 и последующие годы)].

Блестящие работы Чаргаффа (E. Chargaff), Ж. Дейвидсона, особенно Дж. Уотсона, Ф. Крика и Уилкинса (М. Wilkins), завершаются выяснением структуры дезоксирибонуклеиновой кислоты (см.). Устанавливается двухспиральная структура ДНК и роль ее в передаче наследственной информации. Осуществляется синтез нуклеиновых кислот (ДНК и РНК) А. Корнбергом (1960 - 1968), Вейссом (S. Weiss), С. Очоа. Решается (1962 и последующие годы) одна из центральных проблем современной Б. - расшифровывается РНК-аминокислотный код [Крик, М. Ниренберг, Маттеи (F. Crick, J. H. Matthaei), и др.].

Впервые синтезируется один из генов и фаг фх174. Вводится понятие о молекулярных болезнях, связанных с определенными дефектами в структуре ДНК хромосомного аппарата клетки (см. Молекулярная генетика). Разрабатывается теория регуляции работы цистронов (см.), ответственных за синтез различных белков и ферментов (Жакоб, Моно), продолжается изучение механизма белкового (азотистого) обмена.

Ранее классическими исследованиями И. П. Павлова и его школы раскрываются основные физиологические и биохимические механизмы работы пищеварительных желез. Особенно плодотворным было содружество лабораторий А. Я. Данилевского и М. В. Ненцкого с лабораторией И. П. Павлова, к-рое привело к выяснению места образования мочевины (в печени). Ф. Гопкинс и его сотр. (Англия) установили значение ранее неизвестных компонентов пищи, развив на этой основе новую концепцию заболеваний, вызываемых пищевой недостаточностью. Устанавливается существование заменимых и незаменимых аминокислот, разрабатываются нормы белка в питании. Расшифровывается промежуточный обмен аминокислот - дезаминирование, переаминирование (А. Е. Браунштейн и М. Г. Крицман), декарбоксилирование, их взаимные превращения и особенности обмена (С. Р. Мардашев и др.). Выясняются механизмы биосинтеза мочевины (Г. Кребс), креатина и креатинина, открывается и подвергается детальному изучению группа экстрактивных азотистых веществ мышц - дипептиды карнозин, карнитин, ансерин [В. С. Гулевич, Аккерманн (D. Ackermann),

С. Е. Северин и др.]. Детальному изучению подвергаются особенности процесса азотистого обмена у растений (Д. Н. Прянишников, В. Л. Кретович и др.). Особое место заняло изучение нарушений азотистого обмена у животных и человека при белковой недостаточности (С. Я. Капланский, Ю. М. Гефтер и др.). Осуществляется синтез пуриновых и пиримидиновых оснований, выясняются механизмы образования мочевой к-ты, детально исследуются продукты распада гемоглобина (пигменты желчи, кала и мочи), расшифровываются пути образования гема и механизм возникновения острых и врожденных форм порфирий и порфиринурий.

Выдающиеся успехи достигнуты в расшифровке структуры важнейших углеводов [А. А. Колли, Толленс, Киллиани, Хауорт (B.C.Tollens, H. Killiani, W. Haworth) и др.] и механизмов углеводного обмена. Подробно выяснено превращение углеводов в пищеварительном тракте под влиянием пищеварительных ферментов и кишечных микроорганизмов (в частности, у травоядных животных); уточняются и расширяются работы, посвященные роли печени в углеводном обмене и поддержании концентрации сахара в крови на определенном уровне, начатые в середине прошлого века К. Бернаром и Э. Пфлюгером, расшифровываются механизмы синтеза гликогена (при участии УДФ-глюкозы) и его распада [К. Кори, Лелуар (L. F. Leloir) и др.]; создаются схемы промежуточного обмена углеводов (гликолитический, пентозный цикл, цикл Трикарбоновых кислот); выясняется характер отдельных промежуточных продуктов обмена [Я. О. Парнас, Эмбден (G. Embden), О. Мейергоф, Л. А. Иванов, С. П. Костычев, Гарден (A. Harden), Кребс, Ф. Липманн, Коэн (S. Cohen), В. А. Энгельгардт и др.]. Выясняются биохимические механизмы нарушения углеводного обмена (диабет, галактоземия, гликогенозы и др.), связанные с наследственными дефектами соответствующих ферментных систем.

Выдающиеся успехи достигнуты в расшифровке структуры липидов: фосфолипидов, цереброзидов, ганглиозидов, стеринов и стеридов [Тирфельдер, А. Виндаус, А. Бутенандт, Ружичка, Рейхштейн (H. Thierfelder, A. Ruzicka, Т. Reichstein) и др.].

Трудами М. В. Ненцкого, Ф. Кноопа (1904) и Дакина (H. Dakin) создается теория β-окисления жирных кислот. Разработка современных представлений о путях окисления (при участии коэнзима А) и синтеза (при участии малонил-КоА) жирных кислот и сложных липидов связана с именами Лелуара, Линена, Липманна, Грина (D. Е. Green), Кеннеди (Е. Kennedy) и др.

Значительный прогресс достигнут при изучении механизма биологического окисления. Одна из первых теорий биологического окисления (так наз. перекисная теория) была предложена А. Н. Бахом (см. Окисление биологическое). Позднее появилась теория, согласно к-рой различные субстраты клеточного дыхания подвергаются окислению и углерод их в конечном счете превращается в CO2 за счет кислорода не поглощаемого воздуха, а кислорода воды (В. И. Палладии, 1908). В дальнейшем в разработку современной теории тканевого дыхания крупный вклад был внесен работами Г. Виланда, Тунберга (Т. Tunberg), Л. С. Штерн, О. Варбурга, Эйлера, Д. Кейлина (Н. Euler) и др. Варбургу принадлежит заслуга открытия одного из коферментов дегидрогеназ - никотинамидадениндинуклеотид фосфата (НАДФ), флавинового фермента и его простетической группы, дыхательного железосодержащего фермента, получившего впоследствии название цитохромоксидазы. Им же был предложен спектрофотометрический метод определения концентрации НАД и НАДФ (тест Варбурга), который затем лег в основу количественных методов определения целого ряда биохимических компонентов крови и тканей. Кейлин установил роль в цепи дыхательных катализаторов железосодержащих пигментов (цитохромов).

Крупное значение имело открытие Липманном коэнзима А., позволившее разработать универсальный цикл аэробного окисления активной формы ацетата - ацетил-КоА (лимоннокислый цикл Кребса).

В. А. Энгельгардтом, а также Липманном было введено понятие о «богатых энергией» фосфорных соединениях, в частности АТФ (см. Аденозинфосфорные кислоты), в макроэргических связях которых аккумулируется значительная часть энергии, освобождающейся при тканевом дыхании (см. Окисление биологическое).

Возможность сопряженного с дыханием фосфорилирования (см.) в цепи дыхательных катализаторов, вмонтированных в мембраны митохондрий, была показана В. А. Белицером и Калькаром (H. Kalckar). Большое число работ посвящено изучению механизма окислительного фосфорилирования [Чейне (В. Chance), Митчелл (P. Mitchell), В. П. Скулачев и др.].

20 в. ознаменовался расшифровкой химического строения всех известных в наст, время витаминов (см.), вводятся международные единицы витаминов, устанавливаются потребности в витаминах человека и животных, создается витаминная промышленность.

Не менее значительные успехи достигнуты в области химии и биохимии гормонов (см.); изучена структура и синтезированы стероидные гормоны коры надпочечников (Виндаус, Рейхштейн, Бутенандт, Ружичка); установлено строение гормонов щитовидной железы - тироксина, дийодтиронина [Э. Кендалл (Е. С. Kendall), 1919; Харингтон (С. Harington), 1926]; мозгового слоя надпочечников - адреналина, норадреналина [Такамине (J. Takamine), 1907]. Осуществлен синтез инсулина, установлено строение соматотропной), адренокортикотропного, меланоцитостимулирующего гормонов; выделены и изучены другие гормоны белковой природы; разработаны схемы взаимопревращения и обмена стероидных гормонов (Н. А. Юдаев и др.). Получены первые данные о механизме действия гормонов (АКТГ, вазопрессина и др.) на обмен веществ. Расшифрован механизм регуляции функций эндокринных желез по принципу обратной связи.

Существенные данные получены при изучении химического состава и обмена веществ ряда важнейших органов и тканей (функциональная биохимия). Установлены особенности в химическом составе нервной ткани. Возникает новое направление в Б.- нейрохимия. Выделен ряд сложных липидов, составляющих основную массу тканей мозга, - фосфатиды, сфингомиелины, плазмалогены, цереброзиды, холестериды, ганглиозиды [Тудихум,Уэлш (J. Thudichum, H. Waelsh), A. B. Палладии, E. М. K репс и др.]. Выясняются основные закономерности обмена нервных клеток, расшифровывается роль биологически активных аминов - адреналина, норадреналина, гистамина, серотонина, γ-амино-масляной к-ты и др. Вводятся в медицинскую практику различные психофармакологические вещества, открывающие новые возможности в лечении различных нервных заболеваний. Подробно изучаются химические передатчики нервного возбуждения (медиаторы), широко используются, особенно в сельском хозяйстве, различные ингибиторы холинэстеразы для борьбы с насекомыми-вредителями и т. д.

Значительные успехи достигнуты при изучении мышечной деятельности. Подробно исследуются сократительные белки мышц (см. Мышечная ткань). Установлена важнейшая роль АТФ в сокращении мышц [В. А. Энгельгардт и М. Н. Любимова, Сент-Дъёрдьи, Штрауб (A. Szent-Gyorgyi, F. В. Straub)], в движении клеточных органелл, проникновении в бактерии фагов [Вебер, Гоффманн-Берлинг (Н. Weber, H. Hoffmann-Berling), И. И. Иванов, В. Я. Александров, Н. И. Арронет, Б. Ф. Поглазов и др.]; подробно исследуется механизм мышечного сокращения на молекулярном уровне [Хаксли, Хансон (H. Huxley, J. Hanson), Г. М. Франк, Тономура (J. Tonomura) и др.], изучается роль в мышечном сокращении имидазола и его производных (G. Е. Северин); разрабатываются теории двухфазной мышечной деятельности [Хассельбах (W. Hasselbach)] и т. д.

Важные результаты получены при изучении состава и свойств крови: изучена дыхательная функция крови в норме и при ряде патологических состояний; выяснен механизм переноса кислорода от легких к тканям и углекислоты от тканей к легким [И. М. Сеченов, Дж.Холдейн, Ван-Слайк (D.van Slyke), Дж. Баркрофт, Гендерсон (L. Henderson), С. Е. Северин, Г. Е. Владимиров, Е.М. Крепе, Г. В. Дервиз]; уточнены и расширены представления о механизме свертывания крови; установлено наличие в плазме крови целого ряда новых факторов, при врожденном отсутствии которых в крови наблюдаются различные формы гемофилии. Изучен фракционный состав белков плазмы крови (альбумин, альфа-, бета- и гамма-глобулины, липопротеиды и др.). Открыт ряд новых плазменных белков (пропердин, C-реактивпый белок, гаптоглобин, криоглобулин, трансферрин, церулоплазмин, интерферон и др.). Открыта система кининов - биологически активных полипептидов плазмы крови (брадикинин, каллидин), играющих важную роль в регуляции местного и общего кровотока и принимающих участие в механизме развития воспалительных процессов, шока и других патологических процессов и состояний.

В развитии современной Б. важную роль сыграла разработка ряда специальных методов исследования: изотопной индикации, дифференциального центрифугирования (разделение субклеточных органоидов), спектрофотометрии (см.), масс-спектрометрии (см.), электронного парамагнитного резонанса (см.) и др.

Некоторые перспективы развития биохимии

Успехи Б. в значительной мере определяют не только современный уровень медицины, но и ее возможный дальнейший прогресс. Одной из основных проблем Б. и молекулярной биологии (см.) становится исправление дефектов генетического аппарата (см. Генотерапия). Радикальная терапия наследственных болезней, связанных с мутационными изменениями тех или иных генов (т. е. участков ДНК), ответственных за синтез определенных белков и ферментов, в принципе возможна лишь путем трансплантации синтезированных in vitro или выделенных из клеток (напр., бактерий) аналогичных «здоровых» генов. Весьма заманчивой задачей является также овладение механизмом регуляции считки генетической информации, закодированной в ДНК, и расшифровки на молекулярном уровне механизма клеточной дифференцировки в онтогенезе. Проблема терапии ряда вирусных заболеваний, особенно лейкозов, вероятно, не будет решена до тех пор, пока не станет полностью ясен механизм взаимодействия вирусов (в частности, онкогенных) с инфицируемой клеткой. В этом направлении интенсивно ведутся работы во многих лабораториях мира. Выяснение картины жизни на молекулярном уровне позволит не только полностью понять происходящие в организме процессы (биокатализ, механизм использования энергии АТФ и ГТФ при выполнении механических функций, передача нервного возбуждения, активный транспорт веществ через мембраны, явление иммунитета и т. д.), но и откроет новые возможности в создании эффективных лекарственных средств, в борьбе с преждевременным старением, развитием сердечно-сосудистых заболеваний (атеросклероз), продлении жизни.

Биохимические центры в СССР. В системе АН СССР функционируют Институт биохимии им. А. Н. Баха, Институт молекулярной биологии, Институт химии природных соединений, Институт эволюционной физиологии и биохимии им. И. М. Сеченова, Институт белка, Институт физиологии и биохимии растений, Институт биохимии и физиологии микроорганизмов, филиал Института биохимии УССР, Институт биохимии Арм. ССР и др. В системе АМН СССР имеются Институт биологической и медицинской химии, Институт экспериментальной эндокринологии и химии гормонов, Институт питания, Отдел биохимии Института экспериментальной медицины. Существует также ряд биохимических лабораторий в других институтах и научных учреждениях АН СССР, АМН СССР, академиях союзных республик, в вузах (кафедры биохимии Московского, Ленинградского и других университетов, ряда медицинских институтов, Военно-медицинской академии и т. д.), ветеринарных, сельскохозяйственных и других научных учреждениях. В СССР насчитывается около 8 тыс. членов Всесоюзного биохимического общества (ВБО), к-рое входит в Европейскую федерацию биохимиков (FEBS) и в Международный биохимический союз (IUB).

Радиационная биохимия

Радиационная Б. изучает изменения обмена веществ, возникающие в организме при действии на него ионизирующей радиации. Облучение вызывает ионизацию и возбуждение молекул клетки, реакции их с возникающими в водной среде свободными радикалами (см.) и перекисями, что приводит к нарушению структур биосубстратов клеточных органелл, равновесия и взаимных связей внутриклеточных биохимических процессов. В частности, эти сдвиги в сочетании с пострадиационными воздействиями со стороны поврежденной ц. н. с. и гуморальных факторов дают начало вторичным нарушениям обмена веществ, обусловливающим течение лучевого заболевания. Важную роль в развитии лучевой болезни играет ускорение распада нуклеопротеидов, ДНК и простых белков, торможение их биосинтеза, нарушения скоординированного действия ферментов, а также окислительного фосфорилирования (см.) в митохондриях, уменьшение количества АТФ в тканях и усиленная окисляемость липидов с образованием перекисей (см. Лучевая болезнь , Радиобиология , Радиология медицинская).

Библиография: Афонский С. И. Биохимия животных, М., 1970; Биохимия, под ред. H. Н. Яковлева, М., 1969; ЗбарекиЙ Б. И., Иванов И. И. и М а р-д а ш e в С. Р. Биологическая химия, JI., 1972; Кретович В. JI. Основы биохимии растений, М., 1971; JI e н и н д-ж e р А. Биохимия, пер. с англ., М., 1974; Макеев И. А., Гулевич В. С. иБроуде JI. М. Курс биологической химии, JI., 1947; Малер Г. Р. и КордесЮ. Г. Оснопы биологической химии, пер. с англ., М., 1970; Фердман Д. JI. Биохимия, М., 1966; Филиппович Ю. Б. Основы биохимии, М., 1969; III т р а у б Ф. Б. Биохимия, пер. с венгер., Будапешт, 1965; R а р о р о г t S. М. Medizinische Bioc-hemie, B., 1962.

Периодические издания - Биохимия, М., с 1936; Вопросы медицинской химии, М., с 1955; Журнал эволюционной биохимии и физиологии, М., с 1965; Известия АН СССР, Серия биологические науки, М., с 1958; Молекулярная биология, М., с 1967; Украшський бюхем1чний журнал, Кшв, с 1946 (1926-1937 - Науков1 записки Украшського бюхемичного шети-туту, 1938-1941 - Бюхем1чний журнал); Успехи биологической химии, JI., с 1924; Успехи современной биологии, М., с 1932; Annual Review of Biochemistry, Stanford, с 1932; Archives of Biochemistry and Biophysics, N. Y., с 1951 (1942-1950 - Archives of Biochemistry); Biochemical Journal, L., с 1906; Biochemische Zeitsch-rift, В., с 1906; Biochemistry, Washington, с 1964; Biochimica et biophysica acta, N. Y.- Amsterdam, с 1947; Bulletin de la Soci6t<5 de chimie biologique, P., с 1914; Comparative Biochemistry and Physiology, L., с 1960; Hoppe-Seyler’s Zeitschrift fiir physiologische Chemie, В., с 1877; Journal of Biochemistry, Tokyo, с 1922; Journal of Biological Chemistry, Baltimore, с 1905; Journal of Molecular Biology, L.-N.Y., с 1960; Journal of Neurochemistry, L., с 1956; Proceedings of the Society for Experimental Biology and Medicine, N. Y., с 1903; См. также в ст. Клиническая биохимия, Физиология, Химия.

Б. радиационная - Кузин А. М. Радиационная биохимия, М., 1962; P о -манцев Е. Ф. и д р. Ранние радиационно-биохимические реакции, М., 1966; Федорова Т. А., Терещенко О. Я. и М а з у р и к В. К. Нуклеиновые кислоты и белки в организме при лучевом поражении, М., 1972; Черкасова Л. С. и д р. Ионизирующее излучение и обмен веществ, Минск, 1962, библиогр.; Altman К. I., Gerber G. В. а. О k a d a S. Radiation biochemistry, v. 1-2, N. Y.- L., 1970.

И. И. Иванов; Т. А. Федорова (рад.).

Биохимия крови – один из самых распространенных и информативных анализов, которые назначают врачи при диагностике большинства заболеваний. Видя его результаты, можно судить о состоянии работы всех систем организма. Практически каждое заболевание находит отражение в показателях биохимического анализа крови.

Что необходимо знать

Забор крови осуществляется из вены на локтевом изгибе, реже из вен на кисти и
предплечье.

В шприц набирают около 5-10 мл крови.

Позже кровь на биохимию в специальной пробирке помещают в специализированный прибор, который обладает способностью определять необходимые показатели с высокой точностью. Следует иметь в виду, что различные приборы могут иметь несколько отличающиеся границы нормы у определенных показателей. Результаты будут готовы при экспресс-методе в течение дня.

Как готовиться

Биохимическое исследование проводят утром натощак.

Перед сдачей крови необходимо воздержаться от употребления алкоголя в течение суток.
Последний прием пищи должен быть накануне вечером, не позднее 18.00. За два часа до сдачи не курить. Также исключить интенсивные физические нагрузки и, по возможности, стрессы. Подготовка к анализу – ответственный процесс.

Что входит в состав биохимии

Различают базовую и расширенную биохимию. Нецелесообразно определять все показатели, которые только возможно. Само собой разумеется, что возрастает цена и количество необходимой крови для анализа. Есть некий условный список базовых показателей, которые назначаются практически всегда, а есть много дополнительных. Их назначает врач в зависимости от клинической симптоматики и цели исследования.

Анализ делается с помощью биохимического анализатора, в который помещают пробирки с кровью

Базовые показатели:

  1. Общий белок.
  2. Билирубин (прямой и непрямой).
  3. Глюкоза.
  4. АЛТ и АСТ.
  5. Креатинин.
  6. Мочевина.
  7. Электролиты.
  8. Холестерин.

Дополнительные показатели:

  1. Альбумин.
  2. Амилаза.
  3. Щелочная фосфотаза.
  4. ГГТП.
  5. Триглицериды.
  6. С-реактивный белок.
  7. Ревматоидный фактор.
  8. Креатининфосфокиназа.
  9. Миоглобин.
  10. Железо.

Список неполный, существует еще много узконаправленных показателей для диагностики обмена веществ и нарушений функций внутренних органов. Теперь рассмотрим некоторые наиболее распространенные биохимические показатели крови подробнее.

Общий белок (65-85 грамм/литр)

Отображает общее количество белка в плазме крови (как альбумина, так и глобулина).
Может быть повышен при дегидратации, вследствие потери воды при многократной рвоте, при интенсивном потоотделении, кишечной непроходимости и перитоните. Также повышается при миеломной болезни, полиартритах.

Понижается данный показатель при длительном голодании и недоедании, заболеваниях желудка и кишечника, когда нарушено поступление белка. При заболеваниях печени нарушается его синтез. Также нарушен синтез белка при некоторых наследственных заболеваниях.

Альбумин (40-50 грамм/литр)

Одна из фракций белка плазмы. При снижении альбумина развиваются отеки, вплоть до анасарки. Связано это с тем, что альбумин связывает воду. При его значительном снижении вода не держится в кровяном русле и выходит в ткани.
Альбумин снижен при тех же состояниях, что и общий белок.

Общий билирубин (5-21мкмоль/литр)

Общий билирубин включает прямой и непрямой.

Все причины повышения общего билирубина можно разделить на несколько групп.
Внепеченочные – различные анемии, обширные кровоизлияния, то есть состояния, сопровождающиеся разрушением красных кровяных клеток.

Печеночные причины связаны с деструкцией гепатоцитов (клеток печени) при онкологии, гепатите, циррозе печени.

Нарушение оттока желчи вследствие обтурации желчных протоков камнями или опухолью.


При повышенном билирубине развивается желтуха, кожа и слизистые приобретают желтушный оттенок

Норма прямого билирубина до 7.9 мкмоль/литр. Непрямой билирубин определяется разницей между общим и прямым. Чаще всего его повышение связано с распадом эритроцитов.

Креатинин (80-115 мкмоль/литр)

Один из основных показателей, характеризующий функцию почек.

Данный показатель повышается при острых и хронических заболеваниях почек. Также при повышенном разрушении мышечных тканей, например, при рабдомиолизе после сверх интенсивной физической нагрузки. Может быть повышен при заболевании эндокринных желез (гиперфункция щитовидной железы, акромегалия). Если человек употребляет в пищу большое количества мясных продуктов, повышенный креатинин также гарантирован.

Креатинин ниже нормы особого диагностического значения не имеет. Может быть снижен у вегетарианцев, у беременных в первой половине беременности.

Мочевина (2.1-8.2 ммоль/литр)

Показывает состояние белкового обмена. Характеризует работу почек и печени. Увеличение мочевины в крови может быть при нарушении функции почек, когда они не справляются с ее выведением из организма. Также при усиленном распаде белков или повышенном поступлением белка в организм с пищей.

Снижение мочевины в крови наблюдается в третьем триместре беременности, при низкобелковой диете и тяжелых заболеваниях печени.

Трансаминазы (АЛТ, АСТ, ГГТ)

Аспартатаминотрансфераза (АСТ) – фермент, синтезируемый в печени. В плазме крови его содержание не должно в норме превышать 37Ед/литр у мужчин и 31Ед/литр у женщин.

Аланинаминотрансфераза (АЛТ) – также, как и АСТ фермент, синтезируется в печени.
Норма в крови у мужчин – до 45 ед/литр, у женщин – до 34 Ед/литр.

Кроме печени, большое количество трансаминаз находится в клетках сердца, селезенки, почек, поджелудочной железы, в мышцах. Повышение его уровня связано с разрушением клеток и выходом данного фермента в кровь. Таким образом, повышение АЛТ и АСТ возможно при патологии всех выше названных органов, сопровождающейся гибелью клеток (гепатит, инфаркт миокарда, панкреатит, некроз почки и селезенки).

Гамма-Глутамилтрансфераза (ГГТ) участвует в обмене аминокислот в печени. Ее содержание в крови повышается при токсических поражениях печени, в том числе, алкоголем. Также повышен уровень при патологии желчевыводящих путей и печени. Всегда повышается при хроническом алкоголизме.

Норма данного показателя – до 32 Ед/литре для мужчин, до 49 Ед/литре для женщин.
Низкий показатель ГГТ, как правило, определяется при циррозе печени.

Лактатдегидрогеназа (ЛДГ) (120-240 ед/литр)

Данный фермент содержится во всех тканях организма и участвует в энергетических процессах окисления глюкозы и молочной кислоты.

Повышен при заболеваниях печени (гепатит, цирроз), сердца (инфаркт), легких (инфаркт-пневмония), почек (различные нефриты), поджелудочной железы (панкреатит).
Снижение активности ЛДГ ниже нормы диагностически незначимо.

Амилаза (3.3-8.9)

Альфа-амилаза (α-амилаза) участвует в обмене углеводов, расщепляя сложные сахара до простых.

Повышают активность фермента острый гепатит, панкреатит, паротит. Также могут влиять некоторые лекарства (глюкокортикойды, тетрациклин).
Понижена активность амилазы при дисфункции поджелудочной железы и токсикозе беременных.

Панкреатическая амилаза (п-амилаза) синтезируется в поджелудочной железе и поступает в просвет кишечника, где излишки почти полностью растворяются трипсином. В норме лишь незначительное количество попадает в кровь, где показатель в норме у взрослых – не более 50 ед/литр.

Активность ее повышена при остром панкреатите. Может быть повышена и при приеме алкоголя и некоторых медикаментов, а также при хирургической патологии, осложненной перитонитом. Снижение амилазы – неблагоприятный признак утраты поджелудочной железой своей функции.

Общий холестерол (3,6-5.2 ммоль/л)

С одной стороны, важный компонент всех клеток и составная часть многих ферментов. А с другой, он играет важную роль в развитии системного атеросклероза.

Общий холестерол включает в себя липопротеиды высокой, низкой и очень низкой плотности. Повышен холестерин при атеросклерозе, нарушении функций печени, щитовидной железы, при ожирении.


Атеросклеротическая бляшка в сосуде – последствие повышенного холестерина

Понижен холестерин при диете, исключающей жиры, при гиперфункции щитовидной железы, при инфекционных заболеваниях и сепсисе.

Глюкоза (4.1-5.9 ммоль/литр)

Важный показатель состояния углеводного обмена и состояния поджелудочной железы.
Повышенная глюкоза может быть после приема пищи, поэтому анализ берется строго натощак. Также повышается при приеме некоторых препаратов (глюкокортикостеройдов, гормонов щитовидной железы), при патологии поджелудочной железы. Постоянно повышенный сахар в крови – главный диагностический критерий сахарного диабета.
Пониженный сахар может быть при острой инфекции, голодании, передозировке сахароснижающих препаратов.

Электролиты (K, Na, Cl, Mg)

Электролиты играют важную роль в системе транспорта веществ и энергии в клетку и обратно. Особенно важно это для правильной работы сердечной мышцы.


Изменение как в сторону увеличения концентрации, так и в сторону уменьшения ведет к нарушениям сердечного ритма, вплоть до остановки сердца

Нормы электролитов:

  • Калий (К+) – 3.5-5.1 ммоль/литр.
  • Натрий (Na+) – 139-155 ммоль/литр.
  • Кальций (Сa++) – 1.17-1.29 ммоль/литр.
  • Хлор (Cl-) – 98-107 ммоль/литр.
  • Магний (Mg++) – 0.66-1.07 ммоль/литр.

Изменение электролитного баланса связано с алиментарными причинами (нарушение поступления в организм), нарушением функций почек, гормональными заболеваниями. Также выраженные электролитные нарушения могут быть при диарее, неукротимой рвоте, гипертермии.

За три дня до того, как сдавать кровь на биохимию с определением магния, необходимо не принимать его препараты.

Кроме этого существует большое количество показателей биохимии, которые назначаются индивидуально при конкретных заболеваниях. Перед сдачей крови ваш лечащий врач определит, какие конкретно из показателей берут в вашей ситуации. Процедурная медсестра выполнит забор крови, а врач-лаборант предоставит расшифровку анализа. Показатели нормы приведены для взрослого человека. У детей и стариков они могут несколько отличаться.

Как видите, биохимический анализ крови – очень большой помощник в диагностике, но сопоставить результаты с клинической картиной может только врач.



Вверх