Дискретные и непрерывные модели примеры. Модели непрерывные и дискретные. Общее определение модели

модель материальный скачкообразный дискретный

Будем предполагать, что возможно, хотя бы в принципе, установить и на некотором языке описания (например, средствами математики) охарактеризовать зависимость каждой из выходных переменных от входных. Связь между входными и выходными переменными моделируемого объекта в принципе может характеризоваться графически, аналитически, т.е. посредством некоторой формулы общего вида, или алгоритмически. Независимо от формы представления конструкта, описывающего эту связь, будем именовать его оператором вход-выход и обозначать через В.

Пусть М=М(X,Y,Z), где X - множество входов, Y - выходов, Z - состояний системы. Схематически можно это изобразить: X Z Y.

Рассмотрим теперь наиболее существенные с точки зрения моделирования внутренние свойства объектов разного класса. При этом придется использовать понятие структура и параметры моделируемого объекта. Под структурой понимается совокупность учитываемых в модели компонентов и связей, содержащихся внутри объекта, а после формализации описания объекта - вид математического выражения, которое связывает его входные и выходные переменные (например: у=au+bv). Параметры представляют собой количественные характеристики внутренних свойств объекта, которые отражаются принятой структурой, а в формализованной математической модели они суть коэффициенты (постоянные переменные), входящие в выражения, которыми описывается структура (а и b).

Непрерывность и дискретность.

Все те объекты, переменные которых (включая, при необходимости, время) могут принимать несчетное множество сколь угодно близких друг к другу значений называются непрерывными или континуальными. Подавляющее большинство реальных физических и теоретических объектов, состояние которых характеризуется только макроскопическими физическими величинами (температура, давление, скорость, ускорение, сила тока, напряженность электрического или магнитного полей и т.д.) обладают свойством непрерывности. Математические структуры, адекватно описывающие такие объекты, тоже должны быть непрерывными. Поэтому при модельном описании таких объектов используется главным образом, аппарат дифференциальных и интегро-дифференциальных уравнений. Объекты, переменные которых могут принимать некоторое, практически всегда конечное число наперед известных значений, называются дискретными. Примеры: релейно-контактные переключательные схемы, коммутационные системы АТС. Основой формализованного описания дискретных объектов является аппарат математической логики (логические функции, аппарат булевой алгебры, алгоритмические языки). В связи с развитием ЭВМ дискретные методы анализа получили широкое распространение также для описания и исследования непрерывных объектов.

Свойство непрерывности и дискретности выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и входы, выходы системы. Таким образом, дискретность множеств Z, Т, Х, Y ведет к модели, называемой дискретной, а их непрерывность -- к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего - замена непрерывной математической функции на набор ее значений в фиксированных точках.

Непрерывные математические модели

Для реализации ММ, представляемых ДУЧП или системами ОДУ, используются численные методы непрерывной математики, поэтому рассмотренные ММ называют непрерывными.

На рис. 1 показаны преобразования непрерывных ММ в процессе перехода от исходных формулировок задач к рабочим программам, представляющим собой последовательности элементарных арифметических и логических операций. Стрелками 1, 2 и 3 показаны переходы от описания структуры объектов на соответствующем иерархическом уровне к математической формулировке задачи. Дискретизация (4) и алгебраизация (5) ДУЧП по пространственным переменным осуществляются методами конечных разностей (МКР) или конечных элементов (МКЭ). Применение МКР или МКЭ к стационарным ДУЧП приводит к системе алгебраических уравнений (АУ), а к нестационарным ДУЧП--к системе ОДУ. Алгебраизация и дискретизация системы ОДУ по переменной t осуществляются методами численного интегрирования. Для нелинейных ОДУ (6) это преобразование приводит к системе нелинейных АУ, для линейных ОДУ (7) -- к системе линейных алгебраических уравнений (ЛАУ). Нелинейные АУ решаются итерационными методами. Стрелка 8 соответствует решению методом Ньютона, основанному на линеаризации уравнений, стрелка 9--методами Зейделя, Якоби, простой итерации и т. п. Решение системы ЛАУ сводится к последовательности элементарных операций (10) с помощью методов Гаусса или LU-разложения.

Рис. 1

Непрерывные ММ и используемые для их анализа методы вычислительной математики получили широкое распространение в САПР различных отраслей промышленности.

Создание методики автоматического формирования математических моделей систем позволило автоматизировать процедуры анализа и верификации широкого класса технических объектов. Инвариантный характер этой методики обусловил разработку на ее основе методов и алгоритмов, реализованных во многих ПМК проектирования электронных, механических, гидравлических, теплоэнергетических устройств и систем. Известны такие методы формирования ММ как узловой метод, контурный метод, метод переменных состояния.

Дискретные математические модели

Дискретной математической моделью называется модель, в которой выполнена дискретизация тех или иных переменных. Рассмотрим ММ, в которых дискретными являются зависимые переменные, характеризующие состояние моделируемого объекта.

Проектирование систем на функционально-логическом и системном уровнях основано на применении дискретных ММ. При моделировании в подсистемах функционально-логического проектирования принимаются те же допущения, что и при моделировании аналоговых систем на верхних уровнях. Кроме того, моделируемый объект представляется совокупностью взаимосвязанных логических элементов, состояния которых характеризуются переменными, принимающими значения в конечном множестве. В простейшем случае это множество {0, 1}. Непрерывное время t заменяется дискретной последовательностью моментов времени tк, при этом длительность такта. Следовательно, математической моделью объекта является конечный автомат (КА). Функционирование КА описывается системой логических уравнений КА

На системном уровне проектирования систем преимущественно распространены модели систем массового обслуживания (СМО). Для таких моделей характерно то, что в них отображаются объекты двух типов--заявки на обслуживание и обслуживающие аппараты (ОА). При проектировании ВС заявками являются решаемые задачи, а обслуживающими аппаратами--оборудование ВС. Заявка может находиться в состоянии «обслуживание» или «ожидание», а обслуживающий аппарат--в состоянии «свободен» или «занят». Состояние СМО характеризуется состояниями ее ОА и заявок. Смена состояний называется событием. Модели СМО используются для исследования процессов, происходящих в этой системе при подаче на входы потоков заявок. Эти процессы представляются последовательностями событий. По результатам исследования определяются наиболее важные выходные параметры системы: производительность, пропускная способность, вероятность и среднее время решения задач, коэффициенты загрузки оборудования.

Появление параллельных и конвейерных систем, необходимость моделировать процессы функционирования не только аппаратных, но и программных средств привело к появлению класса дискретных ММ, называемых сетями Петри. Сети Петри можно использовать для моделирования на функционально-логическом и системном уровнях проектирования широкого круга систем и сетей.

Сети Петри и СМО широко используются для описания функционирования производственных участков, линий и цехов, ориентированных на многономенклатурное производство изделий. Сети Петри -- эффективный инструмент разработки самих САПР. Эти сети могут служить моделями алгоритмов функционирования различных устройств дискретной автоматики.

Отображения в пространстве.

Трехмерное вращение.

Сдвиг.

Основы преобразований.

Трехмерное изменение масштаба.

Данное преобразование производит частное изменение масштаба. Общее изменение масштаба получается за счет использования четвертого диагонального элемента.

Не диагональные элементы левой верхней подматрицы 3*3 в общем матричном преобразование размером 4*4 осуществляется сдвиг в трех измерениях, то есть:

В предыдущем случае было показано, что матрица 3*3 обеспечивает комбинацию операций измерения масштаба и сдвига. Однако, если определенная матрица 3*3 = 1, то имеет место чистое вращение около начала координат.

Рассмотрим несколько частных случаев вращения.

При вращение вокруг оси х размеры вдоль оси х не изменяются, таким образом матрица преобразований будет иметь нули в первой строке и столбце, за исключением единицы на главной диагонали. И будет иметь вид:

Угол Ө - угол вращения вокруг оси х;

Вращение предполагается положительным по часовой стрелке, если смотреть с начала координат вдоль оси вращения.

Для вращения на угол φ около оси Y нули ставят во второй стороне и столбце матрицы преобразования за исключением единицы на главной диагонали.

Матрица имеет вид:

Аналогично матрица преобразований для вращения на угол ψ вокруг оси Z:

Так как вращение описывается умножением матрицы, то трехмерное вращение не коммутативное, то есть порядок умножения будет влиять на конечный результат.

Иногда требуется выполнить зеркальное отображение трехмерного изображения.

Рассмотрим частный случай отображения. Матрица преобразования относительно плоскости XYимеет вид:

И отображение YZ или отображение XZприотображение относительно других плоскостей можно получить путем комбинации вращения и отображения.

Для отображения yz:

Для отображения xz:

Тв.модели

При каркасном моделировании хотя оно и является объемным, мы не учитываем, что является телом, а что внутренностью.

Поэтому появляется термин – твердотельная модель.

Термин твердотельная модель говорит о том, что помимо свойств описания геометрии (очерков, каркасов) существуют признаки или свойства, разделяющие пространства на свободное и на сам геометрический объект.

В связи с тем, что описание свойства твердотельности математической модели может быть многообразными. Приведем только некоторые способы описания твердотельных моделей.



Принцип построения дискретной модели заключается в том, что объект делится на элементарнее подпространства. Данному элементарному подпространству присваивается индекс, определяющий принадлежность или непринадлежность к телу.

Преимущества:

1. Разработан математический аппарат на основе булевой алгебры и математической логики.

2. Простота задания геометрического объекта.

Недостатки:

1. Геометрический объект задается дискретно, возникает вопрос математической модели о точности задания геометрического объекта по гладкости, по возможности построения нормали к геометрическому объекту.

2. Для данной модели существуют проблемы в уравнении и масштабировании геометрического объекта.

Эффект масштабирования - нельзя ни растянуть ни сжать, делаем от и до.

Дискретные модели. Однако деление систем на непрерывные и дискретные во многом произвольно зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал балльных оценок и т. Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Дискретные модели относятся к системам, все элементы которых, а также связи между ними (т. е. обращающаяся в системе информация) имеют дискретный характер. Следовательно, все параметры такой системы дискретны.

Непрерывные модели. Противоположное понятие — непрерывная система. Однако деление систем на непрерывные и дискретные во многом произвольно, зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным (при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал, балльных оценок и т. п.). Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов. Их поведение может описываться с помощью разностных уравнений.

Другие похожие работы, которые могут вас заинтересовать.вшм>

16929. Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов 10.92 KB
Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов Сложившаяся в настоящее время практика преподавания курса Дискретная математика для студентов экономических специальностей ВУЗов приводит к тому что они фактически не обладают знаниями и умениями позволяющими успешно решать широкий круг практических задач использующих дискретные объекты и модели не имеют развитого логического мышления у них отсутствует культура алгоритмического мышления. Для восполнения указанных пробелов...
15214. ЦИФРОВЫЕ И ДИСКРЕТНЫЕ СИГНАЛЫ 97.04 KB
Обработкой сигнала называют процесс преобразования сигнала исходящего от источника информации с целью освобождения от различного рода помех и от информации вносимой косвенным характером измеряемого физического процесса и нелинейными характеристиками датчиков а также с целью представления полезной информации в наиболее удобной форме. С учетом математической модели сигнала и задач обработки строится математическая модель процесса ЦОС. Классы моделей систем ЦОС отличаются по видам решаемых задач...
15563. СПЕЦИАЛЬНЫЕ ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ 58.05 KB
Модель авторегрессии выражает текущее значение процесса через линейную комбинацию предыдущих значений процесса и отсчета белого шума. Название процесса – термин математической статистики где линейная комбинация x = 1y1 2 y2 p yp z = z Ty связывающая неизвестную переменную x с отсчетами y = T называется моделью регрессии x регрессирует на y. Для стационарности процесса необходимо чтобы корни k характеристического уравнения p 1p-1 p =0 лежали внутри круга единичного круга I 1 . Корреляционная...
16918. Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики 11.74 KB
Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики Современная экономическая теория в своей основе даже если далеко не всегда есть основания идентифицировать специфические черты соответствующей исследовательской программы является теорией индивидуального выбора что обусловливает высокий статус принципа методологического индивидуализма в исследованиях посвященных самым разнообразным проблемам Шаститко 2006. Индивидуальный выбор строится на таких фундаментальных основаниях как ограниченность...
3111. Инвестиции и сбережения в кейнсианской модели. Макроэкономическое равновесие в модели “кейнсианский крест” 27.95 KB
Инвестиция – это функция ставки процента: I=Ir Эта функция убывающая: чем выше уровень процентной ставки тем ниже уровень инвестиций. По взглядам Кейнса сбережения – это функция доходаа не процентной ставки: S=SY Т. инвестиции являются функцией процентной ставки а сбережения – функцией дохода.
5212. Уровни модели OSI и TCP/IP 77.84 KB
Сетевая модель - теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня использовали бы протоколы нижестоящего уровня
8082. Модели элементов 21.98 KB
Совокупность элементов модели дискретного устройства называется базисом моделирования. Очень часто базис моделирования не совпадает с элементным базисом. Обычно из более сложной модели базиса моделирования можно получить более простую модель. В данном случае совпадение 2х соседних итераций является критерием окончания моделирования одного входного набора.
2232. Цветовые модели 475.69 KB
О работе с цветом Свойства цвета и соответствие цветов Цветовой круг и дополнительные цвета Цветовой круг демонстрирует соотношение между тремя первичными цветами красным зеленым и синим и тремя первичными цветами голубым пурпурным и желтым. Цвета расположенные друг напротив друга называются дополнительными цветами. Если вы сделали фотографию в которой избыток зеленого цвета то этот эффект можно подавить добавив соответствующий дополнительный цвет пурпурный смесь красного и синего согласно модели RGB. Дополнительный цветовой...
7358. Модели обучения 16.31 KB
Традиционное обучение представляет собой обучение ЗУН по схеме: изучение нового - закрепление - контроль - оценка. Ученики выступают как объекты управления. Со стороны учителя преобладает авторитарно-директивный стиль управления и инициатива обучаемых чаще подавляется, чем поощряется
7155. Цвет и цветовые модели 97.22 KB
Чтобы успешно применять их в компьютерной графике необходимо: понимать особенности каждой цветовой модели уметь определять тот или иной цвет используя различные цветовые модели понимать как различные графические программы решают вопрос кодирования цвета понимать почему цветовые оттенки отображаемые на мониторе достаточно сложно точно воспроизвести при печати. Так как цвет может получиться в процессе излучения и в процессе отражения то существуют два противоположных метода его...

Дискретной называется система, которая может переходить из одного состояния в другое только в определенные моменты времени. Дискретные системы распространены очень широко. Например, цифровой компьютер является дискретной системой. Если модель непрерывной системы является дифференциальное уравнение, то моделью дискретной системы является разностное уравнение. Дискретные системы можно представить также в пространстве состояний или с помощью передаточной функции. Предположим, что мы используем компьютер для управления неким объектом (рис. 5.1).

Рис. 5.1. Цифровая система управления

Поскольку компьютер является цифровым устройством, работающим в реальном времени, он может принимать информацию в дискретные моменты времени. Пусть эти моменты отстоят друг от друга на постоянную величину. Этот интервал времени называется шагом дискретизации.

Тогда сигнал, поступающий в компьютер, можно представить в виде числовой последовательности, которую мы обозначим как. Очень часто параметр опускают, и тогда обозначение превращается в.

Выходной сигнал также является числовой последовательностью. Компьютер обладает памятью, поэтому мы можем запоминать входные и выходные сигналы в прошедшие моменты времени. Линейное разностное уравнение с постоянными коэффициентами и -го порядка выглядит следующим образом

Порядок уравнения определяет «глубину памяти» системы.

В рассматриваемом нами случае разностное уравнение (5.1) описывает динамику регулятора, в качестве которого используется цифровой компьютер. Однако оно может служить и моделью объекта, если тот является линейной дискретной системой.

Решить разностное уравнение означает найти последовательность. Такую последовательность называют решетчатой функцией. Существует три основных метода решения линейных разностных уравнений с постоянными коэффициентами. Первый (классический) метод состоит в нахождении общего и частного решений подобно тому, как это делается при классическом решении линейных дифференциальных уравнений. Этот метод мы рассматривать не будем. Второй метод является рекуррентным; он используется при решении разностных уравнений с помощью цифрового компьютера. Мы рассмотрим его на примере.

Пример 5.1. Получим решение следующего разностного уравнения

Причем, . Решения для можно получить, положив сначала в разностном уравнении, затем, затем и т.д. В результате получим

Используя этот метод, можно определить для любых значений. При больших значениях подобная процедура очень трудоемка, поэтому лучше выполнить ее на компьютере. Последний пример для решается с помощью следующей программы «MATLAB»:

mkminus1=0; ekminus1=0; ek=1;

mk=ek-ekminus1-mkminus1;

В этой программе ekminus1 соответствует значению, ek - значению, mkminus1 - значению, а mk - значению.

В качестве второго примера применения рекуррентного метода решения разностных уравнений рассмотрим численное интегрирование дифференциального уравнения по методу Эйлера. Дано дифференциальное уравнение первого порядка:

Для малого значения производную можно представить как

Тогда дифференциальное уравнение приближенно примет вид:

Переходя к дискретному времени, получим разностное уравнение

Таким образом, интегрирование дифференциального уравнения методом Эйлера сводится к получению разностного уравнения. Вообще любой метод численного интегрирования может быть сведен к разностному уравнению и запрограммирован для решения на цифровом компьютере.

Третий метод решения линейных разностных уравнений с постоянными коэффициентами основан на использовании -преобразования, которое эквивалентно преобразованию Лапласа для непрерывных систем. Рассмотрим следующее разностное уравнение -го порядка, считая входную последовательность известной

Преобразование данного уравнения выглядит следующим образом:

где - параметр -преобразования, - параметр преобразования Лапласа,

Шаг дискретизации,

Изображение входного сигнала,

Изображение выходного сигнала.

Преобразование основано на теореме операционного исчисления о запаздывании. Если, то.

Уравнение (5.3) можно переписать следующим образом

Поскольку известно, то можно найти, применив обратное -преобразование к выражению (5.4).

Пример 5.2. Рассмотрим разностное уравнение из предыдущего примера

Найдем -преобразование этого уравнения

Отсюда следует

Изображение входного сигнала можно представить в виде

Решетчатая функция равна коэффициентам полученного ряда

В программе имитационного моделирования «Simulink», которая является частью языка технического программирования «MATLAB», модель дискретной системы задается в виде рациональной передаточной функции

где - коэффициенты (вещественные или комплексные).

Конечное множество чисел: () называется полюсами, а множество () - нулями системы (5.4). Полюса (и нули) могут быть действительными, либо комплексными. В последнем случае они образуют пару комплексно-сопряженных чисел. Если система устойчивая, то модули всех ее полюсов меньше единицы. В противном случае - система неустойчивая.

Пример 5.3. Дискретная система первого порядка (инерционное звено) имеет передаточную функцию

где и - коэффициенты (- полюс системы).

Пример 5.4. Дискретная система второго порядка имеет передаточную функцию

где и - полюса системы, .

Пример 5.5. Построим в «MATLAB» модель дискретной системы второго порядка, показанной на рис. 5.2. На рис. 5.3 приведена реакция этой системы на ступенчатый входной сигнал.

Рис. 5.2. Устойчивая дискретная система второго порядка

Рис. 5.3. Реакция устойчивой дискретной системы второго порядка на ступенчатый входной сигнал

Пример 5.6. Построим в «MATLAB» модель дискретной системы второго порядка, показанной на рис. 5.4. На рис. 5.5 приведена реакция этой системы на ступенчатый входной сигнал.

Рис. 5.4. Неустойчивая дискретная система второго порядка

Рис. 5.5. Реакция неустойчивой дискретной системы второго порядка на ступенчатый входной сигнал

Дискретная система, также как и непрерывная, может быть представлена в пространстве состояний:

Уравнение состояния;

Уравнение наблюдения, где

· - входной сигнал;

· - выходной сигнал;

· - вектор состояний;

· A, B, C, D - параметрические матрицы.

Пример 5.7. Система первого порядка может быть описана такими параметрами:

Пример 5.8. Система второго порядка может иметь следующие матрицы.

Аннотация: Первая тема имеет вводный, в основном, терминологический характер. Подробно раскрываются понятия модели и моделирования, их назначение как основного, а подчас, и единственного метода анализа и синтеза сложных систем и процессов. Дается обзор классификации моделей и моделирования, в некоторой мере упрощенный, но достаточный для полного уяснения сущности моделирования как вообще, так и математического в частности.

Сам по себе процесс моделирования в полной мере не формализован, большая роль в этом принадлежит опыту инженера. Но, тем не менее, рассматриваемый в теме процесс создания модели в виде шести этапов может стать основой для начинающих и с накоплением опыта может быть индивидуализирован.

Математическая модель , являясь абстрактным образом моделируемого объекта или процесса, не может быть его полным аналогом. Достаточно сходства в тех элементах, которые определяют цель исследования. Для качественной оценки сходства вводится понятие адекватности модели объекту и, в связи с этим, раскрываются понятия изоморфизма и изофункционализма. Формальных приемов, позволяющих автоматически, "бездумно", создавать адекватные математические модели, нет. Окончательное суждение об адекватности модели дает практика, то есть сопоставление модели с действующим объектом. И, тем не менее, усвоение всех последующих тем пособия позволит инженеру справляться с проблемой обеспечения адекватности моделей.

Завершается тема изложением требований к моделям, которые были сформулированы Р. Шенноном на заре компьютерного моделирования тридцать лет назад в книге " Имитационное моделирование систем - искусство и наука". Актуальность этих требований сохраняется и в настоящее время.

1.1. Общее определение модели

Практика свидетельствует: самое лучшее средство для определения свойств объекта - натурный эксперимент , т. е. исследование свойств и поведения самого объекта в нужных условиях. Дело в том, что при проектировании невозможно учесть многие факторы, расчет ведется по усредненным справочным данным, используются новые, недостаточно проверенные элементы (прогресс нетерпелив!), меняются условия внешней среды и многое другое. Поэтому натурный эксперимент - необходимое звено исследования. Неточность расчетов компенсируется увеличением объема натурных экспериментов, созданием ряда опытных образцов и "доводкой" изделия до нужного состояния. Так поступали и поступают при создании, например, телевизора или радиостанции нового образца.

Однако во многих случаях натурный эксперимент невозможен.

Например, наиболее полную оценку новому виду вооружения и способам его применения может дать война. Но не будет ли это слишком поздно?

Натурный эксперимент с новой конструкцией самолета может вызвать гибель экипажа.

Натурное исследование нового лекарства опасно для жизни человека.

Натурный эксперимент с элементами космических станций также может вызвать гибель людей.

Время подготовки натурного эксперимента и проведение мероприятий по обеспечению безопасности часто значительно превосходят время самого эксперимента. Многие испытания, близкие к граничным условиям, могут протекать настолько бурно, что возможны аварии и разрушения части или всего объекта.

Из сказанного следует, что натурный эксперимент необходим, но в то же время невозможен либо нецелесообразен.

Выход из этого противоречия есть и называется он " моделирование ".

Моделирование - это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.

Отсюда следует.

Моделирование - это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект . Этот промежуточный объект называется моделью . Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.

Моделирование , во-вторых, это испытание , исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается "промежуточное звено" - модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента , заменяющим изучаемый объект .

Моделирование , в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие .

Подобие может быть физическим, геометрическим, структурным, функциональным и т. д. Степень подобия может быть разной - от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.

Остановимся на основных целях моделирования .

Прогноз - оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз - главная цель моделирования .

Объяснение и лучшее понимание объектов . Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация - это точное определение такого сочетания факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности - выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.

Часто модель создается для применения в качестве средства обучения : модели-тренажеры, стенды, учения, деловые игры и т. п.

Моделирование как метод познания применялось человечеством - осознанно или интуитивно - всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).

Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.

Наш знаменитый механик-самоучка И. П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.

Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва - генерал-инженер Н. Л. Кирпичев, моделированию в авиастроении - М. В. Келдыш, С. В. Ильюшин, А. Н. Туполев и др., моделированию ядерного взрыва - И. В. Курчатов, А.Д. Сахаров, Ю. Б. Харитон и др.

Широко известны работы Н. Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения - последнего сражения эпохи парусного флота. В 1833 году адмирал П. С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.

Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовались на моделях - плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.

Поучительный пример недооценки моделирования - гибель английского броненосца "Кэптен" в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец "Кэптен". В него было вложено все, что нужно для "верховной власти" на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель устойчивости "Кэптена" и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

1.2. Классификация моделей и моделирования

Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации, и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации :

  • характер моделируемой стороны объекта;
  • характер процессов, протекающих в объекте;
  • способ реализации модели.


Вверх